رهیافت الگوریتم‏ سازی تعیین تاریخ کاشت گیاهان زراعی در ایران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 نویسنده مسئول، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه سراوان، سراوان، ایران

2 گروه آموزشی علوم زراعی و اصلاح نباتات، پردیس ابوریحان دانشگاه تهران، تهران، ایران

3 دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان شمالی، سازمان تحقیقات، آموزش و ترویج کشاورزی، بجنورد، ایران

5 مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران

6 دانشجوی دکتری زراعت، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان، رفسنجان، ایران

7 گروه زراعت، دانشکده کشاورزی، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران

8 نویسنده مسئول، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

سابقه و هدف: امنیت غذایی یکی از مهمترین مسائل در ارتباط با افزایش رشد جمعیت است. انتخاب تاریخ کاشت در مدل‌های شبیه‌سازی رشد و تولید گیاهان زراعی در مطالعات مرتبط با امنیت غذایی و تغییر اقلیم اهمیت زیادی دارد. در بیشتر موارد بر اساس آمار برداری، تاریخ کاشت ثابتی انتخاب می‌شود. این در حالی است که تاریخ کاشت واقعی کشاورزان ثابت نبوده و بسته به شرایط آب و هوایی هر سال ممکن است تغییر نماید. بنابراین استفاده از داده‏های اقلیمی برای الگوریتم‌سازی و تخمین زمان کاشت در مدل های گیاهان زراعی رهیافتی مفید برای پیش بینی دقیق عملکرد می باشد.

مواد و روش ها: در این مطالعه اطلاعات تاریخ کاشت گیاهان زراعی مهم کشور (12 گیاه زراعی مهم) از استان‌های مختلف با کمک مراکز استانی سازمان تحقیقات، آموزش و ترویج کشاورزی کشور جمع آوری گردید. سپس با توجه به هر گیاه و تاریخ کاشت کشاورزان، الگوریتم سازی انجام شد. با کمک مدل SSM-iCrop2 مقادیر مختلف آستانه برای الگوریتم‌های مختلف در هر گیاه بررسی شدند و مقدار مناسب انتخاب گردید طوری که تاریخ کاشت پیش‌بینی شده با تاریخ کاشت کشاورزان بیشترین انطباق را داشته باشد. جهت ارزیابی الگوریتم کاشت، داده‏های واقعی تاریخ کاشت در مطالعات مختلف گردآوری شد. سپس برای همان مطالعات که تاریخ کاشت واقعی در دسترس بود، الگوریتم‏سازی تاریخ کاشت صورت گرفت.

یافته ها: دو الگوریتم پر کاربرد بودند از: گیاهان پاییزه مثل گندم، جو، کلزا، نخود، عدس، سیب زمینی و چغندر قند زمانی کشت می‌شوند که میانگین دمای هوا به کمتر از 16 درجه سانتی‌گراد کاهش یافته باشد. در مناطق گرمتر این حد دمایی به 17 تا 20 درجه سانتی‌گراد نیز افزایش پیدا می‌کند. در کشت بهاره، گیاهانی مثل لوبیا، نخود، عدس و سیب زمینی زمانی کشت می شوند که متوسط دمای هوا به بالاتر از 7 درجه سانتی‌گراد افزایش یافته‌باشد. این حد دمایی برای چغندر قند بهاره درجه سانتی‌گراد 12 و برای ذرت در اقلیم‌های سرد و نیز گیاهان تابستانی مثل لوبیا در تاریخ کاشت های زود 15 تا 17 درجه‌سانتی‌گراد است.

نتیجه گیری: از نتایج این مطالعه می‌توان در مدل‌های شبیه سازی گیاهی برای تقلید رفتار کشاورزان در کاشت استفاده نمود. همچنین برای نقاطی که اطلاعات تاریخ کاشت در دسترس نباشد، الگوریتم‌های کاشت قابل استفاده هستند. به عبارت دیگر، استفاده از یک الگوریتم به جای تاریخ کاشت ثابت در مدل می‏تواند تاریخ کاشت نزدیک‌تر به کشاورز را به‏ویژه در شرایطی که مناطق و سال‏های متفاوتی مدنظر باشد را شبیه‏ سازی کند.

واژه های کلیدی: دما، شبیه سازی، گیاهان زراعی، SSM-iCrop2.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An algorithmic approach for determining the optimal sowing dates for crops in Iran

نویسندگان [English]

  • Seyedreza Amiri 1
  • Elyas Soltani 2
  • Seyed Majid Alimagham 3
  • Alireza Nehbandani 4
  • Ebrahim Zeinali 3
  • Benjamin Torabi 3
  • Eskandar Zand 5
  • Sorayya Ghassemi 5
  • Omid Alasti 3
  • Amir Dadresi 6
  • Roghiyeh Alsadat Hosseini 7
  • Mahbobe Zahed 3
  • Hosna Fayazi 3
  • Hossein Kamari 2
  • Rahele Arab ameri 2
  • Zahra Mohamadzadeh 2
  • Samaneh Rahban 3
  • Samane Mohamadi 3
  • saleh Karamat 3
  • Afshin Soltani 8
1 Corresponding Author, Dept. of Production Engineering and Plant Genetics, Faculty of Agriculture, University of Saravan, Saravan, Iran
2 Aburaihan Campus, University of Tehran, Tehran, Iran.
3 Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Agriculture and Natural Resources Research and Education Center of North Khorasan, Agricultural Research, Education and Extension Organization (AREEO), Bojnourd, Iran
5 Agricultural Research, Education and Extension Organization, Iran
6 Ph.D. Student of Agronomy, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
7 Dept. of Agronomy, Faculty of Agriculture, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
8 Corresponding Author, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Background and Objectives: The selection of sowing dates within crop simulation models holds great importance when addressing issues pertaining to food security and climate change. Typically, statistical analyses lead to the adoption of a fixed sowing date in these models. However, it should be noted that farmers do not adhere to such a rigid schedule; rather, their sowing dates are subject to annual variations influenced by weather conditions. Consequently, incorporating climatic data becomes an effective methodology for developing algorithms and estimations regarding sowing date within crop models.

Materials and Methods: This study involved the collection of information regarding the sowing dates of 12 important crops in Iran from various provinces, with the assistance of Agricultural Research, Education and Extension Organization (AREEO) 's provincial centers. Subsequently, algorithmization was performed for each crop based on the sowing dates of farmers. The SSM-iCrop2 model was utilized to evaluate different threshold values for each algorithm in each crop, and the appropriate value was selected to ensure that the predicted sowing date aligned with that of the farmers. To evaluate the sowing algorithm, observed sowing date data were collected from various studies. For those studies where observed sowing dates were available, algorithmization of the sowing date was conducted.

Results: The results of the evaluation of different algorithms indicate that the third algorithm is well-suited for autumn crops, including wheat, barley, rapeseed, chickpeas, lentils, potatoes, and sugar beets, with sowing recommended when the average air temperature is below 16°C. Moreover, this temperature threshold increases to 17-20°C in warmer areas. Algorithm number two was found to be suitable for spring cultivation of crops such as beans, chickpeas, lentils, and potatoes, with sowing recommended when the average air temperature exceeds 7°C. For spring sugar beets, this temperature was 12°C, and for corn in cold climates and summer crops such as beans during early sowing dates, the recommended temperature range was 15-17°C.

Conclusion: The results of our study can be utilized in crop simulFor spring sugar beets, this temperature was 12°C, and for corn in cold climates and summer crops such as beans during early sowing dates, the recommended temperature range was 15-17°C.ation models to replicate farmers' sowing behavior. Additionally, these algorithms can be applied in regions where information regarding sowing dates is unavailable. By incorporating an algorithm instead of a fixed sowing date within the model, a sowing date that more closely aligns with that of the farmer can be simulated, particularly in situations where various regions and years are being considered.



Keywords: Crops, Simulation, SSM-iCrop2,Temperature.

کلیدواژه‌ها [English]

  • Crops
  • Simulation
  • SSM-iCrop2
  • Temperature
1.Sekine, H. (2021). Wheat grower payments for varietal use: comparison between Japan, Germany, and Australia. Japanese Journal of Agricultural Economics, 23, 18-31.
2.Chen, C., Ota, N., Wang, B., Fu, G., & Fletcher, A. (2023). Adaptation to climate change through strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment. Science of the Total Environment, 880, 163230.
3.Jiang, T.,Wang, B., Xu, X., Cao, Y., Li Liu, D., & He, L. (2022). Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate. Agricultural and Forest Meteorology, 319, 108933.
4.Dobor, L., Barcza, Z., Hlásny, T., Árendás, T., Spitko, T., & Fodor, N. (2016). Crop sowing date matters: Estimation methods and effect on future yields. Agricultural and Forest Meteorology, 223, 103-115.
5.Taylor, C., Cullen, B., D'Occhio, M., Rickards, L., & Eckard, R. (2018). Trends in wheat yields under representative climate futures: implications for climate adaptation. Agricultural Systems, 164, 1-10.
6.Zhao, Y., Xiao, D., Tang, J., & Bai, H. (2019). Effects of climate change on the yield of major grain crops and its adaptation measures in China. Research of Soil and Water Conservation, 26, 317-326.
7.Cammarano, D., Payero, J., Basso, B., Stefanova, L., & Grace, P. (2013). Adapting wheat sowing dates to projected climate change in the Australian subtropics: analysis of crop water use
and yield. Crop and Pasture Science,63 (10), 974-986.
8.Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., & Izaurralde, R. C. (2015). The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1. 0). Geoscientific Model Development,8 (2), 261-277.
9.Waongo, M., Laux, P., & Kunstmann, H. (2015). Adaptation to climate change: the impacts of optimized sowing dates on attainable maize yields under rainfed conditions in Burkina Faso. Agricultural and forest meteorology, 205, 23-39.
10.Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., & Moore, A. D. (2014). APSIM–evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350.
11.Deryng, D., Sacks, W. J., Barford, C. C., & Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global biogeochemical cycles,
25 (2), 1-18.
12.Zhen-Zhen, Z., Shuang, C., Peng, F., Nian-Bing, Z., Zhi-Peng, X., Ya-Jie, H., Fangfu, X., Bao-Wei, G., Hai-Yan, W., & Hong-Cheng, Z. (2023). Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat. Journal of Integrative Agriculture,
22 (5), 1366-1380.
13.Leenhardt, D., & Lemaire, P. (2002). Estimating the spatial and temporal distribution of sowing dates for regional water management. Agricultural Water Management, 55 (1), 37-52.
14.Maton, L., Bergez, J. E., & Leenhardt, D. (2007). Modelling the days which are agronomically suitable for sowing maize. European journal of agronomy, 27 (1), 123-129.
15.Stöckle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European journal of agronomy, 18 (3), 289-307.
16.Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., & Bussière, F. (2003). An overview of the crop model STICS. European Journal of agronomy, 18 (3-4), 309-332.
17.Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J., Hunt, L. A., Singh, U., Lizaso, J. I., White, J. W., Uryasev, O., & Ogoshi, R. (2015). Decision Support System for Agrotechnology Transfer. Version 4.6. DSSAT Foundation, Prosser, WA.
18.Sacks, W. J., Deryng, D., Foley, J. A., & Ramankutty, N. (2010). Crop sowing dates: an analysis of global patterns. Global Ecology and Biogeography, 19 (5), 607-620.
19.Soltani, A., Nehbandani, A., Zainli, A., Torabi, B., Zand, A., Ghasemi, S., Elesti, A., Dadarsi, A., Hosseini, R. A., Aalimaqam , S. M., Zahid, M., Fayazi, H., Kemari, H., Arab Ameri, R., Mohammadzadeh, Z., Rehban, S., Mohammadi, S., & dignity, P. (2018). Preparation of the gap atlas of yield and production capacity of important agricultural plants in the country in current and future climatic conditions. The research plan of the Agricultural Research, Education and Promotion Organization. 274 p. [In Persian]
20.Wolf, J., Ouattara, K., & Supit, I. (2015). Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso. Agricultural and Forest Meteorology, 214, 208-218.
21.Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., LOTZE‐CAMPEN, H. E. R. M. A. N. N., Müller, C., Reichstein, M., & Smith, B. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology,
13 (3), 679-706.
22.Soltani, A., Alimagham, S. M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S., Pourshirazi, S., Alasti, O., Hosseini, R. S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadez, V., van Ittersum, M. K., & Sinclair, T. R. )2020(. SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 182, 102855.
23.Eitzinger, J., Trnka, M., Semerádová, D., Thaler, S., Svobodová, E., Hlavinka, P., Šiška, B., Takáč, J., Malatinská, L., Nováková, M., & Dubrovský, M. (2013). Regional climate change impacts on agricultural crop production in Central and Eastern Europe–hotspots, regional differences and common trends. The Journal of Agricultural Science, 151 (6), 787-812.
24.Waha, K., Van Bussel, L. G. J., Müller, C., & Bondeau, A. (2012). Climate‐driven simulation of global crop sowing dates. Global Ecology and Biogeography, 21 (2), 247-259.
25.Kucharik, C. J. (2008). Contribution of sowing date trends to increased maize yields in the central United States. Agronomy Journal, 100 (2), 328-336.