1.Aborisade, M. A., Geng, H., Oba, B. T., Kumar, A., Ndudi, E. A., Battamo, A. Y., Liu, J., Chen, D., Okimiji, O. P., & Ojekunle, O. Z. (2023). Remediation of soil polluted with Pb and Cd and alleviation of oxidative stress in Brassica rapa plant using nanoscale zerovalent iron supported with coconut-husk biochar. Journal of Plant Physiology, 154023.
2.Shen, H., Sun, Y., Duan, H., Ye, J., Zhou, A., Meng, H., Zhu, F., He, H., & Gu, C. (2023). Effect of PVC microplastics on soil microbial community and nitrogen availability under laboratory-controlled and field-relevant temperatures. Applied Soil Ecology, 184, 104794.
3.Nosova, A. O., & Uspenskaya, M. V. (2023). Ecotoxicological effects and detection features of polyvinyl chloride microplastics in soils: A review. Environmental Advances, 13, 100437.
4.Huang, D., Wang, X., Yin, L., Chen, S., Tao, J., Zhou, W., Chen, H., Zhang, G., & Xiao, R. (2022). Research progress of microplastics in soil-plant system: ecological effects and potential risks. Science of The Total Environment, 812, 151487.
5.Wang, W., Ge, J., & Yu, X. (2020). Bioavailability and toxicity of microplastics to fish species: a review. Ecotoxicology and environmental safety, 189, 109913.
6.Briassoulis, D. (2023). Agricultural plastics as a potential threat to food security, health, and environment through soil pollution by microplastics: Problem definition. Science of The Total Environment, 164-533.
7.Rad, M. M., Moghimi, H., & Azin, E. (2022). Biodegradation of thermo-oxidative pretreated low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics by Achromobacter denitrificans Ebl13. Marine Pollution Bulletin, 181, 113830.
8.Abreu, C. M., Rezende, T. C., Serra, A. C., Fonseca, A. C., Braslau, R., & Coelho, J. F. (2023). Convenient and industrially viable internal plasticization of polyvinylchloride: copolymerization
of vinyl chloride and commercial monomers. Polymer, 267, 125688.
9.Khalid, N., Aqeel, M., & Noman, A. (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, 115653.
10.Bitarishvili, S., Dikarev, A., Kazakova, E., Bondarenko, E., Prazyan, A., Makarenko, E., Babina, D., Podobed, M., & Geras’ kin, S. (2023). Growth, antioxidant system, and phytohormonal status of barley cultivars contrasting in cadmium tolerance. Environmental Science and Pollution Research,
30, 59749-59764.
11.Zhao, L., Liu, W., Lian, J., Shen, M., & Huo, X. (2020). Effects of electric fields on Cd accumulation and photosynthesis in Zea mays seedlings. Journal of Environmental Management, 276, 111328.
12.Cao, X., Luo, J., Wang, X., Chen, Z., Liu, G., Khan, M. B., Kang, K. J., Feng, Y., He, Z., & Yang, X. (2020). Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of the Total Environment, 7, 138152.
13.Lian, J., Wu, J., Zeb, A., Zheng, S., Ma, T., Peng, F., Tang, J., & Liu, W. (2020). Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.)? Environmental Pollution, 263, 114498.
14.Tekdal, D., & Çetiner, S. (2018). Investigation of the effects of salt (NaCl) stress and cadmium (cd) toxicity on growth and mineral acquisition of Vuralia turcica. South African Journal of Botany, 118, 274-279.
15.Liu, W., Wu, J., Lian, J., Zhang, X., Zeb, A., Zhou, Q., & Sun, Y. (2021). Potential use of Impatiens balsamina L. for bioremediation of lead and polychlorinated biphenyl contaminated soils. Land Degradation & Development, 32, 3773-3784.
16.Shi, R., Liang, L., Liu, W., & Zeb, A. (2022). Kochia scoparia L., a newfound candidate halophyte, for phytoremediation of cadmium-contaminated saline soils. Environmental Science and Pollution Research, 29, 44759-44768.
17.Kafi, M., Asadi, H., & Ganjeali, A. (2010). Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems. Agricultural Water Management, 9 (7), 139-147.
18.Yu, Q., Gao, B., Wu, P., Chen, M., He, C., & Zhang, X. (2023). Effects of microplastics on the phytoremediation of Cd, Pb, and Zn contaminated soils by Solanum photeinocarpum and Lantana camara. Environmental Research, 15, 231 (Pt 3), 116312.
19.Li, R., Yu, L., Chai, M., Wu, H., & Zhu, X. (2020). The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China. Science of the Total Environment, 708, 135025.
20.Bates, L. S., Waldren, R. A., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
21.Pavithra, K., & Vadivukkarasi, S. (2015). Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Science and Human Wellness, 4, 42-46.
22.Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28, 25-30.
23.Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51, 844-851.
24.Zhang, S., Ni, X., Arif, M., Yuan, Z., Li, L., & Li, C. (2020). Salinity influences Cd accumulation and distribution characteristics in two contrasting halophytes, Suaeda glauca and Limonium aureum. Ecotoxicology and Environmental Safety, 191, 110230.
25.Ma, J., Aqeel, M., Khalid, N., Nazir, A., Alzuaibr, F. M., Al-mushhin, A. A., Hakami, O., Iqbal, M. F., Chen, F., & Alamri, S. (2022). Effects of microplastics on growth and metabolism of rice (Oryza sativa L.). Chemosphere, 307, 135749.
26.Wu, P., Tang, Y., Dang, M., Wang, S., Jin, H., Liu, Y., Jing, H., Zheng, C., Yi, S., & Cai, Z. (2020). Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Science of the total environment, 717, 135187.
27.Van Kleunen, M., Brumer, A., Gutbrod, L., & Zhang, Z. (2020). A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants, people, planet, 2, 157-166.
28.Zhang, Z., Li, Y., Qiu, T., Duan, C., Chen, L., Zhao, S., Zhang, X., & Fang, L. (2022). Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L. Science of the Total Environment,852, 158353.
29.Shorobi, F. M., Vyavahare, G. D., Seok, Y. J., & Park, J. H. (2023). Effect of polypropylene microplastics on seed germination and nutrient uptake of tomato and cherry tomato plants. Chemosphere, 329, 138679.
30.Masoudniaragh, A., Oraei, M., Gohari, G., Akbari, A., & Faramarzi, A. (2021). Using halloysite nanotubes as carrier for proline to alleviate salt stress effects in sweet basil (Ocimum basilicum L.). Scientia Horticulturae, 285, 110202.
31.Azimi, F., Oraei, M., Gohari, G., Panahirad, S., & Faramarzi, A. (2021). Chitosan-selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant Physiology and Biochemistry, 167, 257-268.
32.Mehmood, S., Saeed, D. A., Rizwan, M., Khan, M. N., Aziz, O., Bashir, S., Ibrahim, M., Ditta, A., Akmal, M., & Mumtaz, M. A. (2018). Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiology and Biochemistry, 132, 345-355.
33.Khan, M. A., Kumar, S., Wang, Q., Wang, M., Fahad, S., Nizamani, M. M., Chang, K., Khan, S., Huang, Q., & Zhu, G. (2023). Influence of polyvinyl chloride microplastic on chromium uptake and toxicity in sweet potato. Ecotoxicology and Environmental Safety, 251, 114526.
34.Tan, B., Tan, X., Liu, C., Zeng, Y., & Li, Y. (2022). Effects of lead stress on rice (Oryza sativa L.) growth and metabolism in the rhizosphere microenvironment: the role of eicosanoid compounds. Plant Growth Regulation, 96, 483-495.
35.Wang, J., Liu W., Wang, X., Zeb, A., Wang, Q., Mo, F., Shi, R., Liu, J., Yu, M., & Li, J. (2024). Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insights from physiology, oxidative damage, and metabolomics. Science of The Total Environment, 907, 167920.
36.Liu, Y., Cui, W., Li, W., Xu, S., Sun, Y., Xu, G., & Wang, F. (2023). Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil. Journal of Hazardous Materials, 442, 130102.
37.Sun, J., Peng, Z., Zhu, Z.-R., Fu, W., Dai, X., & Ni, B. J. (2022). The atmospheric microplastics deposition contributes to microplastic pollution in urban waters. Water Research, 225, 119116.
38.Zhao, M., Xu, L., Wang, X., Li, C., Zhao, Y., Cao, B., Zhang, C., Zhang, J., Wang, J., & Chen, Y. (2023). Microplastics promoted cadmium accumulation in maize plants by improving active cadmium and amino acid synthesis. Journal of Hazardous Materials, 447, 130788.
39.Huang, F., Hu, J., Chen, L., Wang, Z., Sun, S., Zhang, W., Jiang, H., Luo, Y., Wang, L., & Zeng, Y. (2023). Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: A meta-analysis. Journal of Hazardous Materials, 448, 130887.
40.Colzi, I., Renna, L., Bianchi, E., Castellani, M.B., Coppi, A., Pignattelli, S., Loppi, S., & Gonnelli, C. (2022). Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423, 127-238.
41.Vinodkumar, T., Jithina, M., Vineethkumar, V., Raj, K. V., Sreejesh, P., Vishnu, C., Jose, A., & Prakash, V. (2023). Determination of trace elements concentration and transfer factor in medicinal plants growing in the wetland of Payyanur Region, Kerala, India. Materials Today: Proceedings.
42.Manjate, E., Ramos, S., & Almedia, C. M. R. (2020). Potential interferences of microplastics in the phytoremediation of Cd and Cu by the salt marsh plant Phragmites australis. Journal of Environmental Chemical Engineering, 8, 103658.