تأثیر محلول‌پاشی با سلنیوم بر برخی شاخص‌های مورفولوژی و فیزیولوژی کاهو (Lactuca sativa) تحت شرایط تنش کادمیوم در کشت هیدروپونیک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 نویسنده مسئول، استاد گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانش‌آموخته دکتری علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

5 استادیار گروه علوم گیاهی و گیاهان دارویی، دانشکده کشاورزی مشکین‌شهر، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

سابقه و هدف: کادمیوم یکی از مهمترین آلاینده‌های محیط زیست به شمار می‌رود که موجب صدمات جدی به جانداران و موجوداتی که از آن‌ها تغذیه می‌کنند، می‌شود. زمین‌های کشاورزی آلوده به کادمیوم یک مشکل بزرگ است. زیرا این فلز به راحتی توسط ریشه گیاهان جذب می‌شود و می‌تواند به قسمت‌های هوایی منتقل شود. افزایش تحمل گیاهان به تنش‌های زیستی و غیر‌زیستی موضوع قابل بحث و با اهمیتی است که امروزه بیشتر از پیش به آن پرداخته می‌شود. سلنیوم یکی از عناصری است که می‌تواند در تعدیل تنش در گیاهان استفاده شود. سلنیوم می‌تواند در کاهش اثرات تنش سمیت فلزات سنگین در خاک نقش داشته باشد.

مواد و روش‌ها : این آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو فاکتور و چهار تکرار در شرایط کشت هیدروپونیک در گلخانه تحقیقاتی دانشگاه محقق اردبیلی اجرا شد. فاکتور اول شامل کاربرد فلز کادمیوم (کلرید کادمیوم) در محلول غذایی در سه غلظت (صفر، 30و 60 میکرو مولار) و فاکتور دوم محلول پاشی با سلنیوم (سلنات سدیم) در سه غلظت (صفر، 75 و 150 میکرومولار) بود.

یافته‌ها: نتایج حاصل نشان داد که با افزایش غلظت کادمیم پارامترهایی مانند وزن خشک برگ، تعداد برگ، هدایت روزنه‌ای و میزان کلروفیل کاهش ولی در مقابل پارامتر‌هایی مانند نشت الکترولیتی، میزان مالون‌دی‌آلدئید و قند‌های محلول افزایش یافتند. به‌طوری‌که بیشترین میزان صفات وزن ‌خشک برگ (1/4 گرم)، تعداد برگ (08/20)، هدایت روزنه‌ای (72/26)، کلروفیل‌کل (221/0) در شرایط بدون کادمیم، در‌حالی‌که بیشترین میزان صفات نشت الکترولیتی (76/45)، مالون‌دی‌آلدئید (072/0)، قند محلول (83/0) در غلظت 60 میکرومولار کامیم بدست آمد. همچنین نتایج مربوط به اثرت متقابل دو فاکتور مذکور نشان داد که بیشترین محتوی نسبی آب برگ (95/65 درصد)، کلروفیلa (18/0میلی‌گرم بر گرم وزن‌تر) در تیمار بدون تنش کادمیم و کاربرد محلول پاشی سلنیوم 150 میکرومولار حاصل شد. همچنین سلنیوم موجب تعدیل تنش و اثرات تنش در گیاهانی که تحت تنش فلزات سنگین بودند گردید، به-طوری که بیشترین تاثیر محلول پاشی سلنیوم در غلظت‌های بالای تنش فلز سنگین کادمیوم بود.

نتیجه‌گیری: سمیت کادمیوم موجب بروز اختلال در خصوصیات رشدی، فیزیولوژیکی و بیوشیمیایی در رشد گیاه کاهو می‌شود، همچنین محلول پاشی سلنیوم موجب بهبود خصوصیات رشدی و بهبود عملکرد گیاه کاهو شده و همچنین موجب کاهش و تعدیل اثرات فلز سنگین کادمیم در گیاه کاهو گردید.سمیت کادمیوم موجب بروز اختلال در خصوصیات رشدی، فیزیولوژیکی و بیوشیمیایی در رشد گیاه کاهو می‌شود، همچنین محلول پاشی سلنیوم موجب بهبود خصوصیات رشدی و بهبود عملکرد گیاه کاهو شده و همچنین موجب کاهش و تعدیل اثرات فلز سنگین کادمیم در گیاه کاهو گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of foliar spraying with selenium on some morphological and physiological indicators of lettuce (Lactuca sativa) under cadmium stress in hydroponic culture

نویسندگان [English]

  • Hajar Khanmohammadi 1
  • behrooz esmaielpour 2
  • Rasool Azarmi 3
  • Zahra Aslani 4
  • Ali Shahi Qaraler 5
1 M.Sc. Graduate of Horticultural Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Corresponding Author, Professor, Dept. of Horticultural Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
3 Associate Prof., Dept. of Horticultural Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Ph.D. Graduate of Horticultural Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
5 Assistant Prof., Dept. of Plant Sciences and Medicinal Plants, Meshgin Shahr Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Abstract



Background and objectives:

Cadmium is considered one of the most important pollutants in the environment, which causes serious damage to living organisms and the organisms that feed on them. Agricultural land contaminated with cadmium is a big problem. Because this metal is easily absorbed by the roots of plants and can be transferred to the aerial parts. Increasing the tolerance of plants to biotic and abiotic stresses is a debatable and important issue that is discussed more than ever before. Selenium is one of the elements that can be used to adjust the stress in plants. Selenium can play a role in reducing the stress effects of heavy metal toxicity in soil.

Materials and methods:

This research was carried out in the research greenhouse of Mohaghegh Ardabili University, in a factorial experiment based on completely randomized design with two factors and four replications under hydroponic cultivation conditions. The first factor included the application of cadmium metal in food solution at three concentrations (zero, 30 and 60 µM) and the second factor was spraying with selenium at three concentrations (zero, 75 and 150 µM).

Results:

The results showed that parameters such as leaf dry weight, number of leaves, stomatal conductance and chlorophyll decreased with increasing cadmium concentration, while parameters such as electrolyte diffusion, malondialdehyde and soluble sugars increased. So that the highest amount of leaf dry weight (4.1 gr), number of leaves (20.08), stomatal conductance (26.72), total chlorophyll (0.221), electrolyte leakage (76.45), malondialdehyde (0.072), soluble sugar (0.83) were obtained under cadmium-free conditions and at 60 μM cadmium concentration, respectively. Also, the results related to effect of the two mentioned factors showed that the highest relative content of RWC (65.95%), chlorophyll (0.18 mg/g FW) was obtained in the treatment without cadmium stress and the application of foliar spraying of 150 µM selenium, respectively. Also, selenium moderated stress and effects of stress in plants that were under heavy metal stress, so that the greatest effect of selenium foliar application was in high concentrations of heavy metal stress of cadmium.

Conclusion:

In this study, it was tried to investigate the effects of selenium in modulating the toxicity of the heavy metal cadmium in lettuce plants from different aspects, and according to the results of this research, it can be concluded that cadmium toxicity causes disturbances in growth, physiological and biochemical characteristics in the growth of the lettuce plant is improved, and the use of selenium foliar spraying improved the growth characteristics and performance of the lettuce plant, and also reduced and moderated the effects of the heavy metal cadmium in the lettuce plant.

کلیدواژه‌ها [English]

  • Cadmium toxicity
  • growth indicators
  • lettuce
  • selenium foliar application
  • hydroponics
1.Khan, M. Y., Prakash, V., Yadav, V., Chauhan, D. K., Prasad, S. M., Ramawat, N., & Sharma, S. (2019). Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiology and Biochemistry, 142, 193-201.
2.Asgher, M., Ahmed, S., Sehar, Z., Gautam, H., Gandhi, S. G., & Khan, N. A. (2021). Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). Journal of Hazardous Materials, 401, 123365.
3.Noor, I., Sohail, H., Sun, J., Nawaz, M. A., Li, G., Hasanuzzaman, M., & Liu, J. (2022). Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere, 303, 135196.
4.Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887.
5.Rizwan, M., Ali, S., Rehman, M. Z. U., & Maqbool, A. (2019). A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research, 26, 6279-6289.
6.Ali, N. M., Altaey, D. K., & Altaee, N. H. (2021). The Impact of Selenium, Nano (SiO2) and organic fertilization on growth and yield of potato Solanum tuberosum L. under salt stress conditions. In IOP conference series: Earth and environmental science, (Vol. 735, No. 1, p. 012042). IOP Publishing.
7.Tang, Y., Xie, Y., Sun, G., Tan, H., Lin, L., Li, H., & Tu, L. (2018). Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting photosynthetic activity and antioxidative enzyme activities. Environmental Science and Pollution Research, 25, 30671-30679.
8.Jia, L., Liu, Z., Chen, W., Ye, Y., Yu, S., & He, X. (2015). Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. Journal of Plant Growth Regulation, 34, 13-21. ‏
9.Gallego, S. M., & Benavides, M. P. (2019). Cadmium-induced oxidative and nitrosative stress in plants. Cadmium Toxicity and Toler- ance in Plants. Elsevier, pp. 233-274.
10.Aslam, M. M., Okal, E. J., & Waseem, M. (2023). Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regulation, 99 (3), 397-412.
11.Mahdavi, M., Esmaielpour, B., & Fatemi, H. (2018). Effect of Silicon nutrition on growth and physiology of spearmint (Mentha spicata L.) under Cadmium stress condition. Iranian Journal of Horticultural Science, 49 (1), 183-196. [In Farsi]
12.Azizi, I., Esmaielpour, B. Gallego, S. M., & Benavides, M. P. (2019). Cadmium-induced oxidative and nitrosative stress in plants. Cadmium Toxicity and Tolerance in Plants. Elsevier, pp. 230-245.
13.Borang, Sh., Jahanbakhsh Gede Kehriz, S., & Ebadi, A. (2019). Comparison of the effect of cadmium chloride application and iron and zinc foliar spraying on the biochemical characteristics of wheat under hydroponic cultivation conditions. Plant process and function, 8 (29), 1-13.
14.Asgher, M., Rehaman, A., Islam, S. N. U., Arshad, M., & Khan, N. A. (2023). Appraisal of Functions and Role of Selenium in Heavy Metal Stress Adaptation in Plants. Agriculture, 13 (5), 1083.
15.Abdolzade, A., & Kiyani, Z. (2012). Silicon role in reducing the deficit and iron toxicity in rice plants in a hydroponic system. Journal of Science and Technology of greenhouse cultures, 3, 12. [In Farsi]
16.Manojlović, M. S., Lončarić, Z., Cabilovski, R. R., Popović, B., Karalić, K., Ivezić, V., & Singh, B. R. (2019). Biofortification of wheat cultivars with selenium. Soil & Plant Science, 69 (8), 715-724.
17.Hasanuzzaman, M., Bhuyan, M. B., Raza, A., Hawrylak-Nowak, B., Matraszek-Gawron, R., Al Mahmud, J., & Fujita, M. (2020). Selenium in plants: Boon or bane? Environmental and Experimental Botany, 178, 104170.
18.Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112-121.
19.Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Journal of the Annals of Botany, 78 (3), 389-398.
20.Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30 (1), 105-111.
21.Bates, L. S., Waldren, R. A., & Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
22.Omokolo Ndoumou, D., Tsala ndzomo, G., & Djocgoue, P. F. (1996) Changes in Carbohydrate, Amino Acid and Phenol contents in Cocoa Pods fromthree clones after infection with phytophtora megakarya bra. and grif. Annals of Botany, 77 (2), 153-158.
23.Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloro-plasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Journal of Biochemistry and Biophysics, 125, 180-198.
24.Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods of Enzymology, 11, 764-755.
25.Soon, Y. K., & Abboud, S. (1993). Cadmium, chromium, lead and nickel. Soil sampling and methods of analysis, 101-108.
26.Głowacka, K., Źróbek-Sokolnik, A., Okorski, A., & Najdzion, J. (2019). The effect of cadmium on the activity of stress-related enzymes and the ultrastructure of pea roots. Plants,8 (10), 413.
27.Imran, K. H. A. N., Seleiman, M. F., Chattha, M. U., Jalal, R. S., Mahmood, F., Hassan, F. A., & Haaasn, M. U. (2021). Enhancing antioxidant defense system of mung bean with a salicylic acid exogenous application to mitigate cadmium toxicity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49 (2), 12303-12303.
28.Zhang, J., Zhu, Y., Yu, L., Yang, M., Zou, X., Yin, C., & Lin, Y. (2022). Research advances in cadmium
uptake, transport and resistance in rice (Oryza sativa L.). Cells, 11 (3), 569. 
29.Amirabad, A. S., Behtash, F., & Vafee, Y. (2020). Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Plant Physiology and Biochemistry Journal, 27, 12490-12476.
30.Zhu, Y., Dong, Y., Zhu, N., & Jina, H. (2022). Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption
and improving antioxidant system in plant. Ecotoxicology and Environmental Safety, 240, 113681.
31.Gill, S. S., Khan, N. A., & Tuteja, N. (2012). Cadmium at high dose pertubs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium Sativum L.). Journal of Plant Sciences, 182, 112-120.
32.Nahakpam, S. (2017). Nahakpam Chlorophyll stability: a better trait for grain yield in rice under drought. Indian Journal of Ecology, 44, 77.
33.Hasanuzzaman, M., Bhuyan, M. H. M. B., Raza, A., Hawrylak-Nowak, B., Matraszek-Gawron, R., Mahmud, J. A., Nahar, K., & Fujita, M. (2020). Selenium in plants: Boon or Bane? Environmental and Experimental Botany, 178, 104170. 
34.Li, D., Zhou, C., Ma, J., Wu, Y., Kang, L., An, Q., & Pan, C. (2021). Nanoselenium transformation and inhibition of cadmium accumulation by regulating the lignin biosynthetic pathway and plant hormone signal transduction in pepper plants. Journal of Nanobiotechnology, 19, 316.
35.Kohler, J., Hernández, J. A., Fuensanta Caravaca, F., & Roldan, A. (2009). Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 65, 245-252.
36.Gjorgieva Ackova, D. (2018). Heavy metals and their general toxicity on plants. Plant Science Today, 5 (1), 15-19.
37.Daryaii, F., Karmat, B., & Arvin, M. (2013). The effect of selenium foliar application on some physiological and morphological traits of two wheat cultivars (Kavir-Roshan) under cadmium stress. Journal of Plant Process and Function, 3, 101-114.
38.Baladi, A., Kashani, Habibi, D., & Paknejad, F. (2009). Evaluation of the distribution of two heavy metals, lead and copper, and the role of two anti-oxidant enzymes in alfalfa of the Hamadani variety Nabatat, Islah and Zareat Journal, 4, 73-84.
39.Wu, C., Dun, Y., Zhang, Z., Li, M., & Wu, G. (2020). Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 190, 110091.
40.Yao, X., Chu, J., & Wang, G. (2009). Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research, 130 (3), 283-290.
41.Zhang, X. D., Meng, J. G., Zhao, K. X., Chen, X., & Yang, Z. M. (2018). Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Biometals, 31, 107-121.
42.Mehta, S. K., & Gaur, J. P. (1999). Heavy-metal-induced proline accumu lation and its role in ameliorating metal toxicity in (Chlorella vulgaris). The New Phytologist, 143 (2), 253-259.
43.Rady, M. M. & Hemida, K. A. (2015). Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicology and Environmental Safety, 119, 178-185
44.Abd-Allah, E. F., Hashem, A., Alqarawi, A. A., Wirth, S., & Egamberdieva, D. (2017). Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). Journal of plant interactions, 12 (1), 237-243.
45.Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H. & Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific reports, 11 (1), 9913.
46.Chaâbene, Z., Hakim, I. R., Rorat, A., Elleuch, A., Mejdoub, H., & Vandenbulcke, F. (2018). Copper toxicity and date palm (Phoenix dactylifera) seedling tolerance: monitoring of related biomarkers. Environmental toxicology and chemistry, 37 (3), 797-806.
47.Zhu, Z., Huang, Y., Wu, X., Liu, Z., Zou, J., Chen, Y., & Cui, J. (2019) Increased antioxidative capacity and decreased cadmium uptake contribute to hemin-induced alleviation of cadmium toxicity in Chinese cabbage seedlings. Ecotoxicology and Environmental Safety, 177, 47-57.
48.Ozfidan-Konakci, C., Yildiztugay, E., Bahtiyar, M., & Kucukoduk, M. (2018). The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicology and Environmental Safety, 155, 66-75.
49.Malar, M., Schiavon, M. S., dall’Acqua, E., & Pilon-Smits, A. (2016). Effects of selenium biofortification on crop nutritional quality. Frontiers in plant science, 6, 280-291.
50.Lanza, M. G. D. B., & Reis, A. R. d. (2021). Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry, 164, 27-43.