1.Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. The Annual Review of Plant BiologyAnnu. Rev. Plant Biol. 59 (1), 651-681.
2.McWilliams, D. A., Berglund, D. R., & Endres, G. J. (1999). Soybean growth and management quick guide. North Dakota State University. University of Minnesota.
3.Food and Agriculture Data FAOSTAT. (2015). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/FAO&IPTS.
4.Pasternak, D. (1987). Salt tolerance and crop production-a comprehensive approach. Annual review of phytopathology, 25 (1), 271-291.
5.Wang, D., & Shannon, M. C. (1999). Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant and soil, 214, 117-124.
6.Sun, Y., Mu, C., Zheng, H., Lu, S., Zhang, H., Zhang, X., & Liu, X. (2018). Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Scientific reports, 8 (1), 16203.
7.Singleton, P. W., & Bohlool, B. B. (1984). Effect of salinity on nodule formation by soybean. Plant Physiology, 74 (1), 72-76.
8.Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014 (1), 701596.
9.Abbasdokht, H. (2011). The effect of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum L.). Desert, 16 (1): 61-68.
10.White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: a review. Annals of botany, 88 (6), 967-988.
11.Lee, G. J., Boerma, H. R., Villagarcia, M. R., Zhou, X., Carter, T. E., Li, Z., & Gibbs, M. (2004). A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics, 109, 1610-1619.
12.Hosseini, M. K., Powell, A. A., & Bingham, I. J. (2002). Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Science Research, 12 (3), 165-172.
13.Ashraf, M., McNeilly, T., & Bradshaw, A. D. (1986). The potential for evolution of salt (NaCl) tolerance in seven grass species. New Phytologist, 103 (2), 299-309.
14.Do, T. D., Chen, H., Hien, V. T. T., Hamwieh, A., Yamada, T., Sato, T., ... & Xu, D. (2016). Ncl synchronously regulates Na+, K+ and Cl− in soybean and greatly increases the grain yield
in saline field conditions. Scientific Reports, 6 (1), 19147.
15.Pavli, O. I., Foti, C., Skoufogianni, G., Karastergiou, G., Panagou, A., & Khah, E. M. (2021). Effect of salinity on seed germination and seedling development of soybean genotypes. International Journal of Environmental Sciences & Natural Resources, 27 (2): 1-9.
16.Fooland, M. R., & Jones, R. A. (1991). Genetic analysis of salt tolerance during germination in Lycopersicon. Theoretical and Applied Genetics, 81, 321-326.
17.Guffy, R. D., Hesketh, J. D., Nelson, R. L., & Bernard, R. L. (1991). Seed growth rate, growth duration, and yield in soybean. Biotronics, 20, 19-30.
18.Ebone, L. A., Caverzan, A., Tagliari, A., Chiomento, J. L. T., Silveira, D. C., & Chavarria, G. (2020). Soybean seed vigor: Uniformity and growth as key factors to improve yield. Agronomy, 10 (4), 545.
19.Allen, S. G., Dobrenz, A. K., & Bartels, P. G. (1986). Physiological Response of Salt‐Tolerant and Nontolerant Alfalfa to Salinity during Germination 1. Crop Science, 26 (5), 1004-1008.
20.Hussain, T., Iqbal, A., Amir, I., & Swati, Z. A. (2013). Chlorophyll-based screening for salinity tolerance in wheat genotypes. Journal of Agricultural and Biological Science, 8 (8), 596-598.
21.Valencia, R., Chen, P., Ishibashi, T., & Conatser, M. (2008). A rapid and effective method for screening salt tolerance in soybean. Crop science, 48 (5), 1773-1779.
22.Lee, J. D., Smothers, S. L., Dunn, D., Villagarcia, M., Shumway, C. R., Carter Jr, T. E., & Shannon, J. G. (2008). Evaluation of a simple method to screen soybean genotypes for salt tolerance. Crop science, 48 (6), 2194-2200.
23.Witten, D. M., & Tibshirani, R. J. (2009). Extensions of sparse canonical correlation analysis with applications to genomic data. Statistical applications in genetics and molecular biology, 8 (1), 1-27.
24.Trugilho, P. F., Lima, J. T., & Mori, F. A. (2003). Canonical correlation of physical and chemical characteristics of the wood of Eucalyptus grandis and Eucalyptus saligna clones. Cerne, 9 (1), 081-091.
25.Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético vegetal.Viçosa: Editora da UFV.
26.da Silva, J. W., Soares, L., Ferreira, P. V., da Silva, P. P., & daSilva, M. J. C. (2007). Correlações canônicas de características agroindustriais em cana-de-açúcar. Acta Scientiarum. Agronomy, 29 (3), 345-349.
27.Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. 5th ed. Prentice Hall, Upper Saddle River, NJ.
28.Khattree, R., & Naik, D. N. (2000). Multivariate data reduction and discrimination. SAS Institute, Cary, North Carolina.
29.Thompson, B. (1991). A primer on the logic and use of canonical correlation analysis. Measurement and evaluation in counseling and development, 24, 80-95.
30.Santos, C. A. F., Cavalcanti, J., Paini, J. N., & Cruz, C. D. (1994). Canonical correlations between primary and secondary components in the grains yield of pigeonpea (Cajanus cajan (L.) Millsp.). Revista Ceres (Brazil), 41 (236), 469-464.
31.Pereira, E. M., Silva, F. M., Val, B. H. P., Neto, A. P., Mauro, A. O., Martins, C. C., & Unêda-Trevisoli, S. H. (2017). Canonical correlations between agronomic traits and seed physiological quality in segregating soybean populations. Genetics and molecular research, 16 (2).
32.Carvalho, I. R. (2021). Interrelations of climatological and physiological attributes and components of soybean seeds yield. Revista Brasileira de Agropecuária Sustentável, 11 (1), 173-184.
33.Zali, H., Sofalian, O., Hasanloo, T., Asgharii, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. In Biological Forum, 7 (2), 703-711.
34.Zali, H., Hassanloo, T., Sofalian, O., Asghari, A., & Zeinalabedini, M. (2017). Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding, 8 (20), 90-77.
35.Abdollahi, H. A., Sofalian, O., Alizadeh, B., Asghari, A., & Zali, H. (2020). Evaluation of Some Autumn Canola Genotypes Based on Agronomy Traits and SIIG Index. Journal of Crop Breeding, 12, 151-159.
36.Najafi, M. T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018). Assessment of non-parametric methods in selection of stable genotypes of durum wheat (Triticum turgidum L. var. durum). Iranian Journal of Crop Sciences, 20, 126-138.
37.Zali, H., & Barati, A. (2020). Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding, 12 (34), 93-104.
38.Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: an introduction. Sage publications, 350 p.
39.Mirzaei, M. R., & Hemayati, S. S. (2022). The effect of environment and maternal plant on germination traits of sugar beet seeds and an approach to select the superior genotype. Agricultural Research, 11 (4), 608-614.
40.Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347 (2nd edit).
41.Khan, M. S. A., Karim, M. A., Haque, M. M., Karim, A. J. M. S., & Mian, M. A. K. (2012). Screening of soybean genotypes for salt tolerance in hydroponics. In conference on ‘Advances in agronomic research under changing environment in Bangladesh’held on October (Vol. 6, p. 2012).
42.Hamwieh, A., & Xu, D. (2008). Conserved salt tolerance quantitative trait locus (QTL) in wild and
cultivated soybeans. Breeding Science, 58 (4), 355-359.
43.Zali, H., Barati, A., Pour-Aboughadareh, A., Gholipour, A., Koohkan, S., Marzoghiyan, A., ... & Nowosad, K. (2023). Identification of superior barley genotypes using selection index of ideal genotype (SIIG). Plants, 12 (9), 1843.
44.Genc, Y., Oldach, K., Verbyla, A. P., Lott, G., Hassan, M., Tester, M., ... & McDonald, G. K. (2010). Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theoretical and Applied Genetics, 121, 877-894.
45.Xu, Y. F., An, D. G., Liu, D. C., Zhang, A. M., Xu, H. X., & Li, B. (2012). Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica, 186, 233-245.
46.Protásio, T. D. P., Guimarães Neto, R. M., Santana, J. D. D. P. D., Guimarães Júnior, J. B., & Trugilho, P. F. (2014). Canonical correlation analysis of the characteristics of charcoal from Qualea parviflora Mart. Cerne, 20, 81-88.
47.Alves, B. M., Cargnelutti Filho, A., Burin, C., & Toebe, M. (2017). Linear associations among phenological, morphological, productive, and energetic-nutritional traits in corn. Pesquisa Agropecuária Brasileira, 52 (1), 26-35.
48.Tahmasebi, S., Dastfal, M., Zali, H., & Rajaie, M. (2018). Drought tolerance evaluation of bread wheat cultivars and promising lines in warm and dry climate of the south. Cereal Research, 8 (2), 209-225.
49.Gholizadeh, A., Ghaffari, M., & Shariati, F. (2021). Use of selection index of ideal genotype (SIIG) in order to select new high yielding sunflower hybrids with desirable agronomic characteristics. Journal of Crop Breeding, 13 (38), 116-123.
50.Haghighatnia, H. A. S. A. N., & Alhani, F. A. R. H. A. D. (2020). Evaluation of irrigation water salinity tolerance indices in new cultivars and lines of safflower. Iranian Journal of Soil and Water Research, 51 (7), 1181-1821.
51.Emami, S., Asghari, A., Mohammaddoust Chamanabad, H., Rasoulzadeh, A., & Ramzi, E. (2019). Evaluation of osmotic stress tolerance in durum wheat (Triticum durum L.) advanced lines. Environmental Stresses in Crop Sciences, 12 (3), 697-707.
52.Shirzad, A., Asghari, A., Zali, H., Sofalian, O., & Mohammaddoust Chamanabad, H. R. (2022). Selection of Barley Superior Lines with Desirable Agronomic Characteristics Using the Selection Index of Ideal Genotype (SIIG). Isfahan University of Technology-Journal of Crop Production and Processing, 12 (1), 97-117.
53.Karim, M. A., Utsunomiya, N., & Shigenaga, S. (1992). Effect of sodium chloride on germination and growth of hexaploid triticale at early seedling stage. Japanese Journal of Crop Science, 61 (2), 279-284.
54.Anitha, T., & Usha, R. (2012). Effect of salinity stress on physiological, biochemical and antioxidant defense systems of high yeilding cultivars of soyabean. International Journal
of Pharma and Bio Sciences, 3 (4), 851-864.
55.Putri, P. H., Susanto, G. W. A., & Artari, R. (2017). Response of soybean genotypes to salinity in germination stage. Nusantara Bioscience, 9 (2), 133-137.
56.Ohashi, Y., Saneoka, H., & Fujita, K. (2000). Effect of water stress on growth, photosynthesis, and photoassimilate translocation in soybean and tropical pasture legume siratro. Soil Science and Plant Nutrition, 46 (2), 417-425.
57.Sharifi, M., Ghorbanli, M., & Ebrahimzadeh, H. (2007). Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of plant physiology, 164 (9), 1144-1151.
58.Islam, M. S. (2001). Morpho-physiology of blackgram and mungbean as influenced by salinity. An MS thesis. Dept. of Agronomy, BSMRAU, Salna, Gazipur, Bangladesh. 87 p.
59.Pandey, U. K., & Sharma, A. P. (2002). Effect of salinity on potassium, calcium and magnesium content in rice varieties.Indian Journal of Plant Physiology, 73 (3), 302-304.
60.Essa, T. A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop science, 188 (2), 86-93.
61.Kumar, A., & Sharma, B. K. (1990). Specific ion effect on germination and seedling growth of wild canary grass (Phalaris minor (L.) Retz). Advances in plant sciences, 3, 321-325.
62.Cramer, G. R., Alberico, G. J., & Schmidt, C. (1994). Leaf expansion limits dry matter accumulation of salt-stressed maize. Functional Plant Biology, 21 (5), 663-674.
63.Alam, S. M., Ansari, R., Mujtaba, S. M., & Shereen, A. (2001). Salinization of millions of hectares of land continues to reduce crop productivity severely worldwide. Saline Lands and Rice: Industry & Economy. Pakistan Economist, 17, 60-71.
64.Läuchli, A., & Wieneke, J. (1979). Studies on growth and distribution of Na+, K+ and Cl− in soybean varieties differing in salt tolerance. Zeitschrift für Pflanzenernährung und Bodenkunde, 142 (1), 3-13.
65.Ferdous, J., Mannan, M. A., Haque, M. M., Mamun, M. A., & Alam, M. S. (2018). Chlorophyll content, water relation traits and mineral ions accumulation in soybean as influenced by organic amendments under salinity stress. Australian Journal of Crop Science, 12 (12), 1806-1812.
66.Kao, W. Y., Tsai, T. T., Tsai, H. C., & Shih, C. N. (2006). Response of three Glycine species to salt stress. Environmental and Experimental Botany, 56 (1), 120-125.
67.Khan, M. S. A., Karim, M. A., Haque, M. M., Karim, A. J. M. S., & Mian, M. A. K. (2012). Screening of soybean genotypes for salt tolerance in hydroponics. Bangladesh Agronomy Journal, 16 (1), 95-104.