ارزیابی روابط بین برخی از صفات رشدی و بیوشیمیایی سویا تحت تنش شوری بوسیله تجزیه همبستگی کانونیک و شاخص انتخاب ژنوتیپ ایده آل در مرحله گیاهچه‌ای

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

نویسنده مسئول، استادیار مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

سابقه و هدف: سویا مانند سایر بقولات در گروه گیاهان حساس به شوری است و نظر به آنکه مانند سایر گیاهان زراعی تحت شرایط تنش شوری با کاهش عملکرد مواجه می شود، لذا کشف سازوکارهایی که پاسخ سویا به شوری را کنترل می کنند و انتخاب ارقامی که در شرایط شوری با کاهش عملکرد روبرو نشوند، از جنبه زراعی و بهره‌وری اقتصادی بسیار مهم است. هدف این تحقیق تعیین روابط بین مجموعه صفات مرتبط با رشد گیاهچه و صفات بیوشیمیایی و استفاده از این روابط و صفات در شناسایی ژنوتیپ‌های متحمل به تنش شوری در سویا بود.

مواد و روش‌ها:

دو طرح بلوک کامل تصادفی جداگانه یکی برای تیمار شاهد با شوری صفر و دیگری برای تیمار شوری با 150 میلی مولار کلرید سدیم، برای ارزیابی 30 ژنوتیپ سویا به صورت کشت هیدروپونیک در شرایط گلخانه‌ای در موسسه اصلاح و تهیه نهال و بذر کرج در سال 1396 استفاده شد. در این مطالعه صفات مرتبط با رشد گیاهچه و صفات بیوشیمیایی زیر مورد بررسی قرار گرفت: شاخص سطح برگ، ارتفاع ساقه، طول ریشه، وزن تر و خشک هر دو اندام هوایی و ریشه، میزان کلروفیل(SPAD value)، شاخص صدمه شوری (Salt injury index)، میزان سدیم و پتاسیم در اندام هوایی و ریشه، نسبت پتاسیم به سدیم اندام هوایی و ریشه، و نسبت جابه جایی سدیم و پتاسیم از ریشه به اندام هوایی.

یافته‌ها: تجزیه واریانس امی نشان داد که ژنوتیپ، محیط (تیمارهای شوری) و برهمکنش‌های آنها اثر معنی‌داری بر تغییرات وزن تر اندام هوایی سویا داشتند. صفات وزن خشک و تر اندام هوایی در هر دو شرایط دارای همبستگی مثبت و معنی دار با صفات ارتفاع اندام هوایی، طول ریشه، سطح برگ، وزن خشک و تر ریشه و با نسبت پتاسیم به سدیم اندام هوایی در شرایط تنش بودند و همچنین در شرایط تنش دارای همبستگی منفی و معنی دار با شاخص صدمه شوری و محتوای سدیم ریشه بودند. تجزیه همبستگی‌های متعارف در شرایط تنش شوری برای مجموعه صفات مرتبط با رشد گیاهچه ها در مقابل مجموعه صفات بیوشیمیایی به ایجاد یک متغیر غیر همبسته معنی‌دار انجامید. به‌منظور انتخاب بهترین ژنوتیپ‌ها با استفاده از تمام صفات مورد بررسی در شرایط تنش از شاخص انتخاب ژنوتیپ ایده‌آل (SIIG) استفاده شد. بر اساس شاخص SIIG، ژنوتیپ‌های Lee، Vernal، LYON، l504، Crawford و Douglas جزء ژنوتیپ‌های متحمل به شوری بودند.

نتیجه‌گیری: در تفکیک ژنوتیپ‌ها به دو دسته متحمل و حساس هر دو روش تجزیه همبستگی کانونیک و روش شاخص انتخاب ژنوتیپ مطلوب مشابهت فراوانی با هم داشتند. بجز صفت محتوای کلروفیل در بقیه صفات واکنش دو دسته ژنوتیپ‌های متحمل و حساس یکسان بود. نتایج نشان داد که ژنوتیپ های سویای متحمل به شوری دارای ارتفاع گیاهچه بلندتر، سطح برگ بیشتر و وزن تر اندام هوایی بیشتری بوده و از طرف دیگر اغلب دارای شاخص صدمه شوری کمتر و میزان سدیم در اندام هوایی کمتری می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of relationships between some developmental and biochemical traits of soybean under salt stress by canonical correlation analysis and ideal genotype selection index at seedling stage

نویسنده [English]

  • Bahram Masoudi
Corresponding Author, Assistant Prof., Dept. of Seed and Plant Improvement Research, Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
چکیده [English]

Introduction

Soybean, like other legumes, is in the group of plants sensitive to salinity, and considering that, like other crops, it faces a decrease in yield under salinity stress conditions, therefore, it is important to discover the mechanisms that control the response of soybean to salinity and to select cultivars that do not face a decrease in yield under salinity conditions, from the aspect of agricultural and economic productivity. This study aimed to determine the relationships between traits related to seedling growth and biochemical traits and identify soybean genotypes that are tolerant to salt stress.

Materials and methods

Two separate randomized complete block designs, one for the control treatment with zero salinity and the other for the salinity treatment with 150 mM sodium chloride, were used to evaluate 30 soybean genotypes under hydroponic culture under greenhouse conditions at the seed and plant improvement institute, Karaj, Iran, in 2016. In this study, the following traits related to seedling growth and biochemical traits were investigated: leaf area index, stem height, root length, fresh and dry weight of both shoots and roots, chlorophyll content, salt injury index, the amount of sodium and potassium in shoots and roots, the ratio of potassium to sodium in shoots and roots, and the transfer ratio of sodium and potassium from roots to shoots.

Results and discussion

AMMI variance analyses showed that genotype, environment (salinity treatments), and their interactions significantly affected soybean shoot weight changes. The results showed that the effect of the environment on the shoot fresh weight was high. The changes in traits under stress conditions with normal conditions showed that we observed a decrease in most traits, except for the salt injury index, amount of sodium and potassium in shoots, amount of sodium in roots, and the transfer ratio of sodium and potassium from roots to shoots. Fresh and dry weight of shoots in both conditions had a positive and significant correlation with shoot height, root length, leaf area, fresh and dry weight of roots, and potassium to sodium ratio of shoots under stress conditions, and they also had a significant negative correlation with salt injury index and root sodium content under stress conditions. Canonical correlation analysis under salt stress conditions for the set of traits related to seedling growth in contrast to the set of biochemical traits led to the creation of a significant non-correlated variable, the first pair of variables were called "shoots characteristics" and "amount of sodium accumulation in shoots and the salt injury index" respectively. To select the best genotypes using all the examined traits under stress conditions, the selection index of ideal genotypes was used. Based on the SIIG index, the genotypes Lee, Vernal, LYON, l504, Crawford, and Douglas, which had the highest SIIG value, were among the genotypes that were tolerant to salinity.

Conclusion

When separating genotypes into tolerant and sensitive categories, both the canonical correlation analysis and ideal genotype selection index methods were very similar. Based on these traits, the genotypes were divided into tolerant and sensitive groups. Except for the chlorophyll content trait, the reactions of the remaining traits in the tolerant and sensitive genotypes were the same. The results showed that soybean genotypes tolerant to salinity have higher seedling height, leaf area, and shoot weight; on the other hand, they often have a lower salinity injury index and lower sodium content in the shoot.

کلیدواژه‌ها [English]

  • soybean
  • salinity stress
  • hydroponics
  • canonical correlation analysis
  • selection index of ideal genotypes
1.Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. The Annual Review of Plant BiologyAnnu. Rev. Plant Biol. 59 (1), 651-681.
2.McWilliams, D. A., Berglund, D. R., & Endres, G. J. (1999). Soybean growth and management quick guide. North Dakota State University. University of Minnesota.
3.Food and Agriculture Data FAOSTAT. (2015). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/FAO&IPTS.
4.Pasternak, D. (1987). Salt tolerance and crop production-a comprehensive approach. Annual review of phytopathology, 25 (1), 271-291.
5.Wang, D., & Shannon, M. C. (1999). Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant and soil, 214, 117-124.
6.Sun, Y., Mu, C., Zheng, H., Lu, S., Zhang, H., Zhang, X., & Liu, X. (2018). Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Scientific reports, 8 (1), 16203.
7.Singleton, P. W., & Bohlool, B. B. (1984). Effect of salinity on nodule formation by soybean. Plant Physiology, 74 (1), 72-76.
8.Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014 (1), 701596.
9.Abbasdokht, H. (2011). The effect of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum L.). Desert, 16 (1): 61-68.
10.White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: a review. Annals of botany, 88 (6), 967-988.
11.Lee, G. J., Boerma, H. R., Villagarcia, M. R., Zhou, X., Carter, T. E., Li, Z., & Gibbs, M. (2004). A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics, 109, 1610-1619.
12.Hosseini, M. K., Powell, A. A., & Bingham, I. J. (2002). Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Science Research, 12 (3), 165-172.
13.Ashraf, M., McNeilly, T., & Bradshaw, A. D. (1986). The potential for evolution of salt (NaCl) tolerance in seven grass species. New Phytologist, 103 (2), 299-309.
14.Do, T. D., Chen, H., Hien, V. T. T., Hamwieh, A., Yamada, T., Sato, T., ... & Xu, D. (2016). Ncl synchronously regulates Na+, K+ and Cl− in soybean and greatly increases the grain yield
in saline field conditions. Scientific Reports, 6 (1), 19147.
15.Pavli, O. I., Foti, C., Skoufogianni, G., Karastergiou, G., Panagou, A., & Khah, E. M. (2021). Effect of salinity on seed germination and seedling development of soybean genotypes. International Journal of Environmental Sciences & Natural Resources, 27 (2): 1-9.
16.Fooland, M. R., & Jones, R. A. (1991). Genetic analysis of salt tolerance during germination in Lycopersicon. Theoretical and Applied Genetics, 81, 321-326.
17.Guffy, R. D., Hesketh, J. D., Nelson, R. L., & Bernard, R. L. (1991). Seed growth rate, growth duration, and yield in soybean. Biotronics, 20, 19-30.
18.Ebone, L. A., Caverzan, A., Tagliari, A., Chiomento, J. L. T., Silveira, D. C., & Chavarria, G. (2020). Soybean seed vigor: Uniformity and growth as key factors to improve yield. Agronomy, 10 (4), 545.
19.Allen, S. G., Dobrenz, A. K., & Bartels, P. G. (1986). Physiological Response of Salt‐Tolerant and Nontolerant Alfalfa to Salinity during Germination 1. Crop Science, 26 (5), 1004-1008.
20.Hussain, T., Iqbal, A., Amir, I., & Swati, Z. A. (2013). Chlorophyll-based screening for salinity tolerance in wheat genotypes. Journal of Agricultural and Biological Science, 8 (8), 596-598.
21.Valencia, R., Chen, P., Ishibashi, T., & Conatser, M. (2008). A rapid and effective method for screening salt tolerance in soybean. Crop science, 48 (5), 1773-1779.
22.Lee, J. D., Smothers, S. L., Dunn, D., Villagarcia, M., Shumway, C. R., Carter Jr, T. E., & Shannon, J. G. (2008). Evaluation of a simple method to screen soybean genotypes for salt tolerance. Crop science, 48 (6), 2194-2200.
23.Witten, D. M., & Tibshirani, R. J. (2009). Extensions of sparse canonical correlation analysis with applications to genomic data. Statistical applications in genetics and molecular biology, 8 (1), 1-27.
24.Trugilho, P. F., Lima, J. T., & Mori, F. A. (2003). Canonical correlation of physical and chemical characteristics of the wood of Eucalyptus grandis and Eucalyptus saligna clones. Cerne, 9 (1), 081-091.
25.Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético vegetal.Viçosa: Editora da UFV.
26.da Silva, J. W., Soares, L., Ferreira, P. V., da Silva, P. P., & daSilva, M. J. C. (2007). Correlações canônicas de características agroindustriais em cana-de-açúcar. Acta Scientiarum. Agronomy, 29 (3), 345-349.
27.Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. 5th ed. Prentice Hall, Upper Saddle River, NJ.
28.Khattree, R., & Naik, D. N. (2000). Multivariate data reduction and discrimination. SAS Institute, Cary, North Carolina.
29.Thompson, B. (1991). A primer on the logic and use of canonical correlation analysis. Measurement and evaluation in counseling and development, 24, 80-95.
30.Santos, C. A. F., Cavalcanti, J., Paini, J. N., & Cruz, C. D. (1994). Canonical correlations between primary and secondary components in the grains yield of pigeonpea (Cajanus cajan (L.) Millsp.). Revista Ceres (Brazil), 41 (236), 469-464.
31.Pereira, E. M., Silva, F. M., Val, B. H. P., Neto, A. P., Mauro, A. O., Martins, C. C., & Unêda-Trevisoli, S. H. (2017). Canonical correlations between agronomic traits and seed physiological quality in segregating soybean populations. Genetics and molecular research, 16 (2).
32.Carvalho, I. R. (2021). Interrelations of climatological and physiological attributes and components of soybean seeds yield. Revista Brasileira de Agropecuária Sustentável, 11 (1), 173-184.
33.Zali, H., Sofalian, O., Hasanloo, T., Asgharii, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. In Biological Forum, 7 (2), 703-711.
34.Zali, H., Hassanloo, T., Sofalian, O., Asghari, A., & Zeinalabedini, M. (2017). Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding, 8 (20), 90-77.
35.Abdollahi, H. A., Sofalian, O., Alizadeh, B., Asghari, A., & Zali, H. (2020). Evaluation of Some Autumn Canola Genotypes Based on Agronomy Traits and SIIG Index. Journal of Crop Breeding, 12, 151-159.
36.Najafi, M. T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018). Assessment of non-parametric methods in selection of stable genotypes of durum wheat (Triticum turgidum L. var. durum). Iranian Journal of Crop Sciences, 20, 126-138.
37.Zali, H., & Barati, A. (2020). Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding, 12 (34), 93-104.
38.Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: an introduction. Sage publications, 350 p.
39.Mirzaei, M. R., & Hemayati, S. S. (2022). The effect of environment and maternal plant on germination traits of sugar beet seeds and an approach to select the superior genotype. Agricultural Research, 11 (4), 608-614.
40.Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347 (2nd edit). 
41.Khan, M. S. A., Karim, M. A., Haque, M. M., Karim, A. J. M. S., & Mian, M. A. K. (2012). Screening of soybean genotypes for salt tolerance in hydroponics. In conference on ‘Advances in agronomic research under changing environment in Bangladesh’held on October (Vol. 6, p. 2012).
42.Hamwieh, A., & Xu, D. (2008). Conserved salt tolerance quantitative trait locus (QTL) in wild and
cultivated soybeans. Breeding Science, 58 (4), 355-359.
43.Zali, H., Barati, A., Pour-Aboughadareh, A., Gholipour, A., Koohkan, S., Marzoghiyan, A., ... & Nowosad, K. (2023). Identification of superior barley genotypes using selection index of ideal genotype (SIIG). Plants, 12 (9), 1843.
44.Genc, Y., Oldach, K., Verbyla, A. P., Lott, G., Hassan, M., Tester, M., ... & McDonald, G. K. (2010). Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theoretical and Applied Genetics, 121, 877-894.
45.Xu, Y. F., An, D. G., Liu, D. C., Zhang, A. M., Xu, H. X., & Li, B. (2012). Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica, 186, 233-245.
46.Protásio, T. D. P., Guimarães Neto, R. M., Santana, J. D. D. P. D., Guimarães Júnior, J. B., & Trugilho, P. F. (2014). Canonical correlation analysis of the characteristics of charcoal from Qualea parviflora Mart. Cerne, 20, 81-88.
47.Alves, B. M., Cargnelutti Filho, A., Burin, C., & Toebe, M. (2017). Linear associations among phenological, morphological, productive, and energetic-nutritional traits in corn. Pesquisa Agropecuária Brasileira, 52 (1), 26-35.
48.Tahmasebi, S., Dastfal, M., Zali, H., & Rajaie, M. (2018). Drought tolerance evaluation of bread wheat cultivars and promising lines in warm and dry climate of the south. Cereal Research, 8 (2), 209-225.
49.Gholizadeh, A., Ghaffari, M., & Shariati, F. (2021). Use of selection index of ideal genotype (SIIG) in order to select new high yielding sunflower hybrids with desirable agronomic characteristics. Journal of Crop Breeding, 13 (38), 116-123.
50.Haghighatnia, H. A. S. A. N., & Alhani, F. A. R. H. A. D. (2020). Evaluation of irrigation water salinity tolerance indices in new cultivars and lines of safflower. Iranian Journal of Soil and Water Research, 51 (7), 1181-1821.
51.Emami, S., Asghari, A., Mohammaddoust Chamanabad, H., Rasoulzadeh, A., & Ramzi, E. (2019). Evaluation of osmotic stress tolerance in durum wheat (Triticum durum L.) advanced lines. Environmental Stresses in Crop Sciences, 12 (3), 697-707.
52.Shirzad, A., Asghari, A., Zali, H., Sofalian, O., & Mohammaddoust Chamanabad, H. R. (2022). Selection of Barley Superior Lines with Desirable Agronomic Characteristics Using the Selection Index of Ideal Genotype (SIIG). Isfahan University of Technology-Journal of Crop Production and Processing, 12 (1), 97-117.
53.Karim, M. A., Utsunomiya, N., & Shigenaga, S. (1992). Effect of sodium chloride on germination and growth of hexaploid triticale at early seedling stage. Japanese Journal of Crop Science, 61 (2), 279-284.
54.Anitha, T., & Usha, R. (2012). Effect of salinity stress on physiological, biochemical and antioxidant defense systems of high yeilding cultivars of soyabean. International Journal
of Pharma and Bio Sciences
, 3 (4), 851-864.
55.Putri, P. H., Susanto, G. W. A., & Artari, R. (2017). Response of soybean genotypes to salinity in germination stage. Nusantara Bioscience, 9 (2), 133-137.
56.Ohashi, Y., Saneoka, H., & Fujita, K. (2000). Effect of water stress on growth, photosynthesis, and photoassimilate translocation in soybean and tropical pasture legume siratro. Soil Science and Plant Nutrition, 46 (2), 417-425.
57.Sharifi, M., Ghorbanli, M., & Ebrahimzadeh, H. (2007). Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of plant physiology, 164 (9), 1144-1151.
58.Islam, M. S. (2001). Morpho-physiology of blackgram and mungbean as influenced by salinity. An MS thesis. Dept. of Agronomy, BSMRAU, Salna, Gazipur, Bangladesh. 87 p.
59.Pandey, U. K., & Sharma, A. P. (2002). Effect of salinity on potassium, calcium and magnesium content in rice varieties.Indian Journal of Plant Physiology, 73 (3), 302-304.
60.Essa, T. A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop science, 188 (2), 86-93.
61.Kumar, A., & Sharma, B. K. (1990). Specific ion effect on germination and seedling growth of wild canary grass (Phalaris minor (L.) Retz). Advances in plant sciences, 3, 321-325.
62.Cramer, G. R., Alberico, G. J., & Schmidt, C. (1994). Leaf expansion limits dry matter accumulation of salt-stressed maize. Functional Plant Biology, 21 (5), 663-674.
63.Alam, S. M., Ansari, R., Mujtaba, S. M., & Shereen, A. (2001). Salinization of millions of hectares of land continues to reduce crop productivity severely worldwide. Saline Lands and Rice: Industry & Economy. Pakistan Economist, 17, 60-71.
64.Läuchli, A., & Wieneke, J. (1979). Studies on growth and distribution of Na+, K+ and Cl− in soybean varieties differing in salt tolerance. Zeitschrift für Pflanzenernährung und Bodenkunde, 142 (1), 3-13.
65.Ferdous, J., Mannan, M. A., Haque, M. M., Mamun, M. A., & Alam, M. S. (2018). Chlorophyll content, water relation traits and mineral ions accumulation in soybean as influenced by organic amendments under salinity stress. Australian Journal of Crop Science, 12 (12), 1806-1812.
66.Kao, W. Y., Tsai, T. T., Tsai, H. C., & Shih, C. N. (2006). Response of three Glycine species to salt stress. Environmental and Experimental Botany, 56 (1), 120-125.
67.Khan, M. S. A., Karim, M. A., Haque, M. M., Karim, A. J. M. S., & Mian, M. A. K. (2012). Screening of soybean genotypes for salt tolerance in hydroponics. Bangladesh Agronomy Journal, 16 (1), 95-104.