1.Baret, F., Guyot, G., & Major, D. J. (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Pp: 1355-1358, The International Geoscience and Remote Sensing Symposium (IGARSS). Canada.
2.Cho, M. A. (2007). Hyper-spectral remote sensing of biochemical and biophysical parameters: the derivate red-edge" double-peak feature", a nuisance or an opportunity? PhD Thesis, Wageningen University, the Netherlands, 241p.
3.Coppin, P., Jonckheere, I., Nackaerts, K., & Muys, B. (2004). Digital change
detection methods in ecosystem monitoring: a review. International journal of remote sensing. 25 (9), 1565-1596. DOI:10.1080/0143116031000101675.
4.Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. John Wiley and Sons. 167p.
5.Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil- adjusted vegetation indices. Remote Sensing of Environment. 55 (2), 95-107. DOI:10. 1016/0034-4257(95)00186-7.
6.Pordel, F., Ebrahimi, A., & Azizi, Z. (2018). Modeling of green canopy cover of marjan rangelands, Boroujen during growing season using spectral indices of OLI sensor. Journal of Geomatics
Science and Technology. 7 (4), 191-203. [In Persian with English abstract]
7.Chao, ZH., Liu, N., Zhang, P., Ying, T., & Song, K. (2019). Estimation methods developing with remote sensing information for energy biomass: A comparative review. Biomass Bioenergy. 122, 414-425.
8.Zheng, G., Chen, J., & Tian, Q. (2007). Combining remote sensing imagery and forest age inventory. Journal of Environmental Management. 85 (3), 616-623. DOI: 10.1016/j.jenvman.2006.07.015.
9.Akbari, M., Karim Zadeh, H. R., Modares, R., & Chakoshi, B. (2007). Assessment and classification of desertification using RS & GIS techniques (case study: the arid region, in the north of Isfahan). Iranian Journal of Range and Desert Research, 14 (2), 124-142. [In Persian with English abstract]
10.Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews. 13 (1), 95-120. DOI:10.1080/ 02757259509532298.
11.Bao, Y., Gao, W., & Gao, Z. (2009). Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions. Frontiers of Earth Science in China.3 (1), 118-128. DOI:10.1007/s11707-009-0012-x.
12.Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment. 35 (2-3), 161-173. doi. org/10.1016/0034-4257(91)90009-U.
13.Battude, M., Al Bitar, A., Brut, A., Tallec, T., Huc, M., Cros, J., & Demarez, V. (2017). Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agricultural Water Management. 189, 123-136. DOI: 10.1016/j.agwat.2017.04.018.
14.Elvidge, C. D., & Chen, Z. (1995). Comparison of broad-band and narrowband red and near-infrared vegetation indices. Remote Sensing of Environment. 54 (1), 38-48. doi.org/ 10.1016/0034-4257(95)00132-K.
15.Lefsky, M. A., & Cohen, W. B. (2003). Selection of remotely sensed data. P 13–46, In M. A. Wulder and S. E. Franklin (eds.), Remote Sensing of Forest Environments: Concepts and Case studies. Kluwer Academic Publishers, Boston. USA.
16.Farazmand, M., Jafari, R., & Ramezani, N. (2014). Comparison the performance of vegetation indices and spectral mixture analysis for mapping rangeland vegetation cover. Iranian Journal of Remote Sensing & GIS. 5 (4), 105-120. [In Persian with English abstract]
17.Zhang, H., Chen, H., & Zhou, G. (2012). The model of wheat yield forecast based on MODIS-NDVI: a case study of Xinxiang. P12, In Proceedings of the ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences Congress. DOI:10.5194/isprs annals-I-7-25-2012.
18.Mohammadi Ahmad Mahmoud, E., Kamkar, B., & Abdi, O. (2015). Comparison of geostatistical- and remote sensing data-based methods in wheat yield predication in some of growing stages (A case study: Nemooneh filed, Golestan province). Journal of Crop Production. 8 (2), 51-76. [In Persian with English abstract]
19.Allbed, A., Kumar, L., & Aldakheel, Y. (2014). Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS highspatial resolution imageries: Applications in a date
plam dominated region. Geoderma. 230-231, 1-8. DIO: 10.1016/j.geoderma. 2014.03.025.
20.Bakhshandeh, S., Kazemi, H., Soltani, A., & Kamkar, B. (2022). Estimation of carbon sequestration potential in soybean farms using remote sensing plant indices (Case study of Gorgan County, Golestan province). ournal of Plant Production Research. 29 (1), 19-37. DOI: 10.22069/JOPP.2022.18657.2752.
21.Toscano, P., Castrignanò, A., Di Gennaro, S. F., Vonella, A. V., Ventrella, D., & Matese, A. (2019). A precision agriculture approach for durum wheat yield assessment using remote sensing data and yield mapping. Agronomy. 9 (8), 437. doi.org/10. 3390/agronomy9080437.
22.Xu, Ch., Ding, Y., Zheng, X., Wang, Y., Zhang, R., Zhang, H., Dai, Z., & Xie, Q. (2022). A comprehensive comparison of machine learning and feature selection methods for Maize biomass estimation using Sentinel-1 SAR, Sentinel-2 vegetation indices, and biophysical variables. Remote Sensing. 14 (16), 4083. doi.org/10.3390/rs14164083.
23.Onisimo, M., Timothy, D., & Omer, G. (2017). Remote sensing of crop health for food security in Africa: potentials and constraints. Remote Sensing Applications: Society and Environment. 8, 231-239. DOI: 10.1016/j.rsase.2017. 10.004.
24.Bao, Zh., Shifaw, E., Deng, Ch., Sha, J., Li, X., Hanchiso, T., & Yang, W. (2022). Remote sensing-based assessment of ecosystem health by optimizing vigor-organization-resilience model: A case study in Fuzhou City, China. Ecological Informatics. 72, 101889. DOI: 10.1016/j.ecoinf.2022.101889.
25.Hunt, M. L., Blackburn, G. A., Carrasco, L., Redhead, J. W., & Rowland, C. S. (2019). High resolution wheat yield mapping using sentinel-2. Remote Sensing of Environment. 233, 111410. DOI: 10.1016/j.rse.2019.111410.
26.Management of agricultural Jihad of Bandar-e-Turkmen city. (2019). Horticulture and agricultural products. www.ajgol.ir/fa.
27.Cai, G., Du, M., & Liu, Y. (2011). Regional drought monitoring and analyzing using MODIS data - A case study in Yunnan province. In, Berlin, Heidelberg, Computer and Computing Technologies in Agriculture IV. Springer Berlin Heidelberg. 345, 243-251. DOI:10.1007/978-3-642-18336-2_29.
28.Gillespie, T. W., Ostermann-Kelm, S., Dong, C., Willis, K. S., Okin, G. S., & MacDonald, G. M. (2018). Monitoring changes of NDVI in protected areas of southern California. Ecological Indicators. 88, 485-494. DOI: 10.1016/j.ecolind. 2018.01.031.
29.Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 25, 295-309. Doi: 10.1016/0034-4257(88)90106-X.
30.Balasundram, S. K., Memarian, H., & Khosla, R. (2013). Estimating oil palm yields using vegetation indices derived from quickbird. Life Science Journal. 10 (4), 851-860. http://www.lifesciencesite.com. 109.
31.Panov, D. Yu., & Sakharova, E. Yu. (2022). Using radar data for grain crops yield forecasting in the Novosibirsk region. Russian Meteorology and Hydrology. 47, 473-478. DOI:10.3390/ pr11030647.
32.Niazmoradi, M., Kazemi, H., Gherekhloo, J., Soltani, A., & Kamkar, B. (2022). Health assessment of wheat agroecosystems (Case of study: Bandar-e-Torkeman county, Golestan province). PhD thesis in Agronomy, Gorgan University of Agricultural Sciences and Natural Resources. 155 p. [In Persian with English abstract]
33.Vuorinne, I., Heiskanen, J., & Pellikka, P.K.E. (2021). Assessing leaf biomass of Agave sisalana using sentinel-2 vegetation indices. Remote Sensing.13 (2), 233. DOI: 10.3390/rs13020233.
34.Soltanian, M., Naderi khorasgani, M., & Tadayyon, A. (2021). Estimation of above-ground biomass of winter wheat (Triticum aestivum L.) using multiple linear regression, artificial neural network models remote sensing data. Journal of Crop Production. 13 (3), 179-196.
DIO: 10.22069/EJCP.2021.18102.2343. [In Persian with English abstract]
35.Meraj, G., Kanga, S., Ambadkar, A., Kumar, P., Kumar Singh, S., Farooq, M., Alan Johnson, B., Rai, A., & Sahu, N. (2022). Assessing the yield of wheat using satellite remote sensing-based machine learning algorithms and simulation modeling. Remote Sensing. 14, 3005. DOI: 10.3390/rs14133005.