برآورد زیست‌توده مزارع گندم با استفاده از شاخص‌های گیاهی دورسنجی در شهرستان بندرترکمن

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری زراعت، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، استاد گروه علوم باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استاد گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استاد گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

5 استاد گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

سابقه و هدف: برآورد سطح زیر کشت و عملکرد محصول در سطح جهانی، یکی از حیاتی‌ترین مسائلی است که سیاست گذاران و تصمیم گیرندگان برای ارزیابی بهره‌وری سالانه محصول و عرضه غذا به آن نیاز دارند. امروزه سنجش از دور (RS) ماهواره‌ای و سامانه اطلاعات جغرافیایی (GIS) می‌تواند تخمین و پایش مستمر این پارامترهای تولید محصول را در مناطق جغرافیایی بزرگ امکان‌پذیر کند و از این طریق سلامت مزارع را نیز مورد بررسی قرار دهد. هدف از این مطالعه تخمین میزان زیست‌‌توده گیاهی گندم با استفاده از روش سنجش از دور و کارایی شاخص‌های گیاهی در برآورد میزان زیست‌توده گیاهی در روش غیرتخریبی نمونه‌برداری می-باشد.

مواد و روش‌ها: به منظور برآورد زیست‌توده مزارع گندم با استفاده از شاخص‌های گیاهی دورسنجی، تعداد 59 مزرعه گندم در سال زراعی 1398-1399 با پراکنش تصادفی و یکنواخت در سطح اراضی کشاورزی شهرستان بندرترکمن انتخاب شدند. نمونه‌های گیاهی در تاریخ 25 فروردین‌ماه 1399 مصادف با اوج مرحله رشد رویشی گندم با استفاده از کوادرات 25/0 متر مربعی به‌صورت کف‌بر از مزارع جمع‌آوری شده و وزن خشک آن‌ها توزین گردید. در این پژوهش تصاویر ماهواره‌ای سنتینل-2 مربوط به نزدیک‌ترین زمان نمونه‌برداری برابر با 31 فروردین ماه جهت محاسبه شاخص‌های گیاهی NDVI، SAVI، DVI و RVI مورد استفاده قرار گرفت. در ادامه ارتباط رگرسیونی بین مقادیر زیست‌توده اندازه‌گیری شده و مقادیر شاخص‌های گیاهی بررسی و تحلیل گردید.

یافته‌ها: براساس نتایج مقایسه شاخص‌های گیاهی مورد بررسی، شاخص RVI به‌عنوان شاخص گیاهی برتر شناخته شد. این شاخص دارای بالاترین میزان ضریب تبیین (885/0) و ضریب همبستگی (941/0) و کم‌ترین مقادیر RMSE (21/32) و ضریب تغییرات (1/5) نسبت به سایر شاخص‌های دیگر بود. بنابراین از شاخص RVI جهت برقراری رابطه رگرسیونی با میزان زیست‌توده اندازه‌گیری شده گندم استفاده شد. برقراری ارتباط رگرسیونی بین زیست‌توده اندازه‌گیری و زیست‌توده تخمین زده شده، نشان‌دهنده کارایی بالای تصاویر ماهواره‌ای مورد استفاده و شاخص‌های دورسنجی در برآورد زیست‌توده گیاهی می‌باشد. نقشه RVI در اراضی کشاورزی مورد مطالعه، کم‌ترین میزان این شاخص را در غرب و شمال‌غربی شهرستان برابر با 44/0 نشان داد. شوری زیاد خاک و بالا بودن سطح ایستابی آب در این مناطق می‌تواند دلیلی بر پوشش گیاهی کم‌تر در این اراضی و در نتیجه مقدار پایین شاخص RVI در این نقاط باشد. این نقشه مقادیر بالاتر این شاخص (46/27) را در مناطق مرکزی، شرق و جنوب شرقی شهرستان نشان داد. مقادیر بالای این شاخص گویای پوشش گیاهی متراکم در این مناطق می‌باشد که می‌توان ناشی از مقادیر بالای درصد کربن و ماده آلی خاک، وفور و توزیع مناسب بارش، مدیریت مطلوب مزرعه، شوری پایین‌تر خاک، تغذیه مناسب خاک و سایر عوامل دیگر برشمرد.

نتیجه‌گیری: در مجموع می‌توان نتیجه گرفت که میزان شاخص‌ گیاهی RVI بالاتر و پیرو آن تولید زیست‌توده بیش‌تر می‌تواند نشان‌دهنده وضعیت مطلوب سلامت و رشد محصول گندم در مزارع شهرستان بندر ترکمن باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biomass estimation of wheat fields using remote sensing plant indices in Bandar-e-Turkmen county

نویسندگان [English]

  • Maral Niazmoradi 1
  • Hossein Kazemi 2
  • Javid Gherekhloo 3
  • Afshin Soltani 4
  • Behnam Kamkar 5
1 Ph.D. Graduate of Agronomy, Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Corresponding Author, Professor, Dept. of Horticulture, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Professor, Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Professor, Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 Professor, Dept. of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Background and objectives: Estimating crop acreage and yield at the global level is one of the most critical issues that policy makers and decision makers need to assess annual crop productivity and food supply. Nowadays, satellite remote sensing (RS) and geographic information system (GIS) can make it possible to continuously estimate and monitor these parameters of crop production in large geographical areas and in this way also examine the health of fields.

Materials and methods: In order to estimate the biomass of wheat fields using remote sensing plant indices, 59 wheat fields were selected in the agricultural year of 2019-2020 with random and uniform distribution in the agricultural lands of Bandar Turkmen county. On April 25, 2019, coinciding with the peak of vegetative growth of wheat, plant samples were collected from the fields using a 0.25 square meter box and their dry weight was weighed. In this research, Sentinel-2 satellite images related to the nearest sampling time of April 31 were used to calculate NDVI, SAVI, DVI and RVI plant indices. Next, the regression relationship between the measured biomass values and plant index values was investigated and analyzed.

Results: Based on the comparison results of the studied plant index, RVI index was recognized as the best plant index. This index had the highest explanation coefficient (0.885) and correlation coefficient (0.941) and the lowest RMSE values (32.21) and coefficient of variation (5.1) compared to other indices. Therefore, this index was used to establish a regression relationship with the amount of wheat plant biomass. Then, using this relationship, the amount of plant biomass obtained from the satellite image was estimated. Based on the results, the strong regression relationship between the measured biomass and the estimated biomass indicates the high efficiency of the used satellite images and telemetry indicators in the estimation of plant biomass. The RVI map in the studied agricultural lands showed the lowest level of this index in the west and northwest of the county equal to 0.44. High soil salinity and high water table in these areas can be a reason for less vegetation in these areas and as a result the low value of RVI index in these places. This map showed higher values of this index (27.46) in the central, eastern and southeastern regions of the county. The high values of this index indicate the dense vegetation cover in these areas, which can be attributed to the high percentage of carbon and organic matter in the soil, the abundance and appropriate distribution of precipitation, optimal fields management, lower soil salinity, proper soil nutrition and other factors.

Conclusion: In general, it can be concluded that the higher RVI plant index and the subsequent higher biomass production can indicate the favorable condition of wheat health and crop growth in Bandar-e-Turkmen fields.

کلیدواژه‌ها [English]

  • Biomass
  • Plant indices
  • Sentinel 2
  • Wheat
1.Baret, F., Guyot, G., & Major, D. J. (1989). TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Pp: 1355-1358, The International Geoscience and Remote Sensing Symposium (IGARSS). Canada.
2.Cho, M. A. (2007). Hyper-spectral remote sensing of biochemical and biophysical parameters: the derivate red-edge" double-peak feature", a nuisance or an opportunity? PhD Thesis, Wageningen University, the Netherlands, 241p.
3.Coppin, P., Jonckheere, I., Nackaerts, K., & Muys, B. (2004). Digital change
detection methods in ecosystem monitoring: a review. International journal of remote sensing. 25 (9), 1565-1596. DOI:10.1080/0143116031000101675.
4.Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. John Wiley and Sons. 167p.
5.Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil- adjusted vegetation indices. Remote Sensing of Environment. 55 (2), 95-107. DOI:10. 1016/0034-4257(95)00186-7.
6.Pordel, F., Ebrahimi, A., & Azizi, Z. (2018). Modeling of green canopy cover of marjan rangelands, Boroujen during growing season using spectral indices of OLI sensor. Journal of Geomatics
Science and Technology
. 7 (4), 191-203. [In Persian with English abstract]
7.Chao, ZH., Liu, N., Zhang, P., Ying, T., & Song, K. (2019). Estimation methods developing with remote sensing information for energy biomass: A comparative review. Biomass Bioenergy. 122, 414-425.
8.Zheng, G., Chen, J., & Tian, Q. (2007). Combining remote sensing imagery and forest age inventory. Journal of Environmental Management. 85 (3), 616-623. DOI: 10.1016/j.jenvman.2006.07.015.
9.Akbari, M., Karim Zadeh, H. R., Modares, R., & Chakoshi, B. (2007). Assessment and classification of desertification using RS & GIS techniques (case study: the arid region, in the north of Isfahan). Iranian Journal of Range and Desert Research, 14 (2), 124-142. [In Persian with English abstract]
10.Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews. 13 (1), 95-120. DOI:10.1080/ 02757259509532298.
11.Bao, Y., Gao, W., & Gao, Z. (2009). Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions. Frontiers of Earth Science in China.3 (1), 118-128. DOI:10.1007/s11707-009-0012-x.
12.Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment. 35 (2-3), 161-173. doi. org/10.1016/0034-4257(91)90009-U.
13.Battude, M., Al Bitar, A., Brut, A., Tallec, T., Huc, M., Cros, J., & Demarez, V. (2017). Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agricultural Water Management. 189, 123-136. DOI: 10.1016/j.agwat.2017.04.018.
14.Elvidge, C. D., & Chen, Z. (1995). Comparison of broad-band and narrowband red and near-infrared vegetation indices. Remote Sensing of Environment. 54 (1), 38-48. doi.org/ 10.1016/0034-4257(95)00132-K.
15.Lefsky, M. A., & Cohen, W. B. (2003). Selection of remotely sensed data. P 13–46, In M. A. Wulder and S. E. Franklin (eds.), Remote Sensing of Forest Environments: Concepts and Case studies. Kluwer Academic Publishers, Boston. USA.
16.Farazmand, M., Jafari, R., & Ramezani, N. (2014). Comparison the performance of vegetation indices and spectral mixture analysis for mapping rangeland vegetation cover. Iranian Journal of Remote Sensing & GIS. 5 (4), 105-120. [In Persian with English abstract]
17.Zhang, H., Chen, H., & Zhou, G. (2012). The model of wheat yield forecast based on MODIS-NDVI: a case study of Xinxiang. P12, In Proceedings of the ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences Congress. DOI:10.5194/isprs annals-I-7-25-2012.
18.Mohammadi Ahmad Mahmoud, E., Kamkar, B., & Abdi, O. (2015). Comparison of geostatistical- and remote sensing data-based methods in wheat yield predication in some of growing stages (A case study: Nemooneh filed, Golestan province). Journal of Crop Production. 8 (2), 51-76. [In Persian with English abstract]
19.Allbed, A., Kumar, L., & Aldakheel, Y. (2014). Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS highspatial resolution imageries: Applications in a date
plam dominated region. Geoderma. 230-231, 1-8. DIO: 10.1016/j.geoderma. 2014.03.025.
20.Bakhshandeh, S., Kazemi, H., Soltani, A., & Kamkar, B. (2022). Estimation of carbon sequestration potential in soybean farms using remote sensing plant indices (Case study of Gorgan County, Golestan province). ournal of Plant Production Research. 29 (1), 19-37. DOI: 10.22069/JOPP.2022.18657.2752.
21.Toscano, P., Castrignanò, A., Di Gennaro, S. F., Vonella, A. V., Ventrella, D., & Matese, A. (2019). A precision agriculture approach for durum wheat yield assessment using remote sensing data and yield mapping. Agronomy. 9 (8), 437. doi.org/10. 3390/agronomy9080437.
22.Xu, Ch., Ding, Y., Zheng, X., Wang, Y., Zhang, R., Zhang, H., Dai, Z., & Xie, Q. (2022). A comprehensive comparison of machine learning and feature selection methods for Maize biomass estimation using Sentinel-1 SAR, Sentinel-2 vegetation indices, and biophysical variables. Remote Sensing. 14 (16), 4083. doi.org/10.3390/rs14164083.
23.Onisimo, M., Timothy, D., & Omer, G. (2017). Remote sensing of crop health for food security in Africa: potentials and constraints. Remote Sensing Applications: Society and Environment. 8, 231-239. DOI: 10.1016/j.rsase.2017. 10.004.
24.Bao, Zh., Shifaw, E., Deng, Ch., Sha, J., Li, X., Hanchiso, T., & Yang, W. (2022). Remote sensing-based assessment of ecosystem health by optimizing vigor-organization-resilience model: A case study in Fuzhou City, China. Ecological Informatics. 72, 101889. DOI: 10.1016/j.ecoinf.2022.101889.
25.Hunt, M. L., Blackburn, G. A., Carrasco, L., Redhead, J. W., & Rowland, C. S. (2019). High resolution wheat yield mapping using sentinel-2. Remote Sensing of Environment. 233, 111410. DOI: 10.1016/j.rse.2019.111410.
26.Management of agricultural Jihad of Bandar-e-Turkmen city. (2019). Horticulture and agricultural products. www.ajgol.ir/fa.
27.Cai, G., Du, M., & Liu, Y. (2011). Regional drought monitoring and analyzing using MODIS data - A case study in Yunnan province. In, Berlin, Heidelberg, Computer and Computing Technologies in Agriculture IV. Springer Berlin Heidelberg. 345, 243-251. DOI:10.1007/978-3-642-18336-2_29.
28.Gillespie, T. W., Ostermann-Kelm, S., Dong, C., Willis, K. S., Okin, G. S., & MacDonald, G. M. (2018). Monitoring changes of NDVI in protected areas of southern California. Ecological Indicators. 88, 485-494. DOI: 10.1016/j.ecolind. 2018.01.031.
29.Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 25, 295-309. Doi: 10.1016/0034-4257(88)90106-X.
30.Balasundram, S. K., Memarian, H., & Khosla, R. (2013). Estimating oil palm yields using vegetation indices derived from quickbird. Life Science Journal. 10 (4), 851-860. http://www.lifesciencesite.com. 109.
31.Panov, D. Yu., & Sakharova, E. Yu. (2022). Using radar data for grain crops yield forecasting in the Novosibirsk region. Russian Meteorology and Hydrology. 47, 473-478. DOI:10.3390/ pr11030647.
32.Niazmoradi, M., Kazemi, H., Gherekhloo, J., Soltani, A., & Kamkar, B. (2022). Health assessment of wheat agroecosystems (Case of study: Bandar-e-Torkeman county, Golestan province). PhD thesis in Agronomy, Gorgan University of Agricultural Sciences and Natural Resources. 155 p. [In Persian with English abstract]
33.Vuorinne, I., Heiskanen, J., & Pellikka, P.K.E. (2021). Assessing leaf biomass of Agave sisalana using sentinel-2 vegetation indices. Remote Sensing.13 (2), 233. DOI: 10.3390/rs13020233.
34.Soltanian, M., Naderi khorasgani, M., & Tadayyon, A. (2021). Estimation of above-ground biomass of winter wheat (Triticum aestivum L.) using multiple linear regression, artificial neural network models remote sensing data. Journal of Crop Production. 13 (3), 179-196.
DIO: 10.22069/EJCP.2021.18102.2343.
[In Persian with English abstract]
35.Meraj, G., Kanga, S., Ambadkar, A., Kumar, P., Kumar Singh, S., Farooq, M., Alan Johnson, B., Rai, A., & Sahu, N. (2022). Assessing the yield of wheat using satellite remote sensing-based machine learning algorithms and simulation modeling. Remote Sensing. 14, 3005. DOI: 10.3390/rs14133005.