بررسی اثر سیلیکون و نانوسیلیکون بر رنگیزه‌های فتوسنتزی و شاخص‌های فلورسانس کلروفیل مرزه رشینگری (Satureja rechingeri Jamzad) تحت تنش خشکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، دانشیار گروه علوم باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران

چکیده

سابقه و هدف: خشکی یکی از مهم‌ترین عوامل محدود کننده تولیدات کشاورزی است که به طور جدی عملکرد محصول را تحت تاثیر قرار می‌دهد. کمبود آب در گیاهان منجر به اختلال در فرآیندهای فیزیولوژیکی مانند کاهش فتوسنتز می‌شود. سیلیکون دومین عنصر فراوان پوسته کره زمین است که در مقاومت گیاه به تنش‌های زیستی و غیرزیستی نقش دارد. بنابراین با توجه به اهمیت دارویی مرزه رشینگری (Satureja rechingeri Jamzad)، هدف از این پژوهش، بررسی اثر سیلیکون و نانوسیلیکون بر صفات طول و عرض برگ، رنگیزه‌ها و پارامترهای فلورسانس کلروفیل مرزه رشینگری تحت تنش خشکی می‌باشد.

روش پژوهش: این آزمایش بصورت فاکتوریل بر پایه طرح کاملا تصادفی در سه تکرار در شرایط گلخانه انجام شد. فاکتورها شامل تنش خشکی در سه سطح تنش شدید، متوسط و عدم تنش به ترتیب ( 60-50 ، 80-70 و 100-90 درصد رطوبت خاک بر پایه ظرفیت زراعی) و محلول‌پاشی سیلیکون در پنج سطح (صفر، 50 و 100میلی‌گرم بر لیتر سیلیکون، 50 و 100میلی‌گرم بر لیتر نانوسیلیکون) بودند.

یافته‌ها: نتایج تجزیه واریانس نشان داد؛ اثر متقابل سیلیکون و تنش خشکی بر عرض برگ، تمامی پارامترهای فلورسانس کلروفیل و غلظت رنگیزه‌های فتوسنتزی بجز کارتنوئید معنی‌دار بود (p<0.05). بیش‌ترین مقدار عرض برگ در تیمار عدم تنش با محلول پاشی 50 میلی‌گرم بر لیتر سیلیکون به‌دست آمد. بیش‌ترین محتوای کلروفیلa و کل در تیمار 50 میلی‌گرم بر لیتر نانوسیلیکون در عدم تنش و بیش‌ترین مقدار کلروفیل b با تیمار 50 میلی‌گرم بر لیتر نانوسیلیکون و 100 میلی‌گرم بر لیتر سیلیکون تحت عدم تنش حاصل شد. کم‌ترین مقدار فلورسانس حداقل (F0) متعلق به تیمار شاهد عدم تنش بود. بیش‌ترین فلورسانس حداکثر (Fm) و فلورسانس متغیر (Fv) در گیاهان تحت تنش متوسط بدون محلول‌پاشی تیمارهای سیلیکون مشاهده شد. تیمارهای 50 و 100 میلی‌گرم بر لیتر سیلیکون و 50 میلی‌گرم بر لیتر نانوسیلیکون تحت تیمار عدم تنش بعلاوه غلظت‌های صفر و 50 میلی‌گرم بر لیتر سیلیکون در تنش متوسط دارای بالاترین عملکرد کوانتومی فیتوسیستم II (Fv/Fm) بودند. با محلو‌پاشی 50 میلی‌گرم بر لیتر سیلیکون تحت عدم تنش بیش‌ترین کارایی سیستم تجزیه آب فتوسیستم II (Fv/F0) حاصل شد. بیش‌ترین میزان انتقال الکترون به ازای هر مرکز واکنش (ET0/RC) در تیمار 100 میلی‌گرم بر لیتر نانوسیلیکون در عدم تنش به‌دست آمد. بیشترین میزان گرفتن الکترون و اتلاف انرژی به ازای هر مرکز واکنش (TR0/RC)، (DI0/RC) تحت تنش شدید بدون محلول‌پاشی حاصل شد و بالاترین عملکرد کوانتومی انتقال الکترون (E0ɸ) در تیمارهای شاهد، 50 و 100 میلی‌گرم بر لیتر سیلیکون و 50 میلی‌گرم بر لیتر نانوسیلیکون تحت تنش متوسط مشاهده شد.

نتیجه‌گیری: تنش شدید خشکی باعث کاهش رنگیز‌ه‌های فتوسنتزی و شاخص‌های فلورسانس کلروفیل شد. کاربرد سیلیکون و نانوسیلیکون اثرات مخرب تنش خشکی بر میزان رنگیزه‌های فتوسنتزی و شاخص فلورسانس را بهبود بخشید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the effect of silicon and nanosilicon on photosynthetic pigments and chlorophyll fluorescence indices of Satureja rechingeri Jamzad under drought stress

نویسندگان [English]

  • Elham Sabzian Molai 1
  • Khodayar Hemmati 2
  • Hasan Mumivand 3
1 Ph.D. Student of Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Corresponding Author, Associate Prof., Dept. of Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associate Prof., Dept. of Horticultural Science, Faculty of Agriculture, Lorestan University, Lorestan, Iran
چکیده [English]

Background and Objective: Drought is one of the most important factors restricting agricultural production, which seriously affects crop yield. Water deficit in plants leads to disturbance in physiological processes such as reduction of photosynthesis. Silicon is the second most abundant element in the earth's crust, which plays a role in plant resistance to biotic and abiotic stresses. Therefore, according to the medicinal importance of Satureja rechingeri Jamzad, the objective of this experiment is to investigation the effect of silicon and nanosilicon on leaf length and width traits, photosynthetic pigments and chlorophyll fluorescence parameters of Satureja rechingeri Jamzad under drought stress.
Material and Methods: this experiment was performed as factorial based on the randomized complete design in three replications under greenhouse conditions. The factors include drought stress in three levels of severe stress, medium stress and none stress respectively (50-60, 70-80 and 90-100% of soil moisture based on field capacity) and silicon foliar spraying in five levels (0, 50 and 100 mg/L of silicon, 50 and 100 mg/L of nanosilicon).
Results: The interaction effect of silicon and drought stress on leaf width, all chlorophyll fluorescence parameters and concentration of photosynthetic pigments except carotenoid was significant(p<0.05). The highest amount leaf width was obtained in the treatment of none stress with foliar spraying of 50 mg/l silicon. the highest contents of chl-a and total chlorophyll was obtained in the treatment of nanosilicon 50 mg/L under none stress and the highest amount of chlorophyll b was achieved with the treatment of nanosilicon 50 and silicon 100 mg/L under none stress treatment. The lowest amount of minimal fluorescence (F0) belonged to the control treatment and the highest amount of maximal fluorescence (Fm) and variable fluorescence (FV) was observed under medium stress without foliar. Silicon 50, 100 mg/L and nanosilicon 50 mg/L treatments in none stress in addition to zero and 50 mg/L silicon concentrations in medium stress had the highest maximum quantum yield of photosystem II (Fv/Fm). The highest efficiency of water splitting system (Fv/F0) was observed in silicon 50 mg/L treatment under none stress. The highest electron transport flux per RC (ET0/RC) was obtained in the treatment of 100 mg/L nanosilicon in none stress. The highest trapped energy flux per RC (TR0/RC) and dissipated energy flux per RC (DI0/RC) were obtained under severe stress without foliar spraying. The highest quantum yield of electron transport (ɸE0) was observed in control, silicon 50 and 100 mg/L and nanosilicon 50 mg/L treatments under medium stress.
Conclusion: Severe drought stress caused a decrease in photosynthetic pigments and chlorophyll fluorescence indices, and the application of silicon and nanosilicon improved the destructive effects of drought stress on the amount of photosynthetic pigments and fluorescence indices.

کلیدواژه‌ها [English]

  • Silisiun
  • silisium nanodioxide
  • irrigation regimes
  • photosystem II
1.Jamzad, Z. (2009). Thymus and Satureja species of Iran. Research Institute of Forest and Rangelands. 171p. [In Persian]
2.Hadian, J., Akramian, M., Heydari, H., Mumivand, H., & Asghari, B. (2012). Composition and in vitro antibacterial activity of essential oils from four Satureja species growing in Iran. Natural product research, 26 (2), 98-108.
3.Kafi, M., Borzoee, A., Salehi, M., Kamandi, A., Masoumi, A., & Nabati, J. (2009). Physiology of environmental stresses in plants. Jahad Daneshgahi Mashhad Press. [In Persian]
4.Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7 (3), 50.
5.Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10 (2), 259.
6.Said-Al, A., Omer, E. A., & Naguib, N. Y. (2009). Effect of water stress and nitrogen fertilizer on herb and essential oil of oregano (Origanum vulgare L.). International Agrophysics, 23, 269-275.
7.Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2015). Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated.
8.Yamori, W. (2016). Photosynthesis and respiration. In Plant factory
(pp. 141-150). Academic Press.
9.Yan, Z., Ma, T., Guo, S., Liu, R. & Li, M. (2021). Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Scientia Horticulturae, 280, 109933.
10.Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of experimental botany, 51 (345), 659-668.
11.Mareckova, M., Bartak, M., & Hajek, J. (2019). Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: a chlorophyll fluorescence study. Polar Biol. 42 (4), 685-701.
12.Zhang, H., Hu, H., Zhang, X., Wang, K., Song, T., & Zeng, F. (2012). Detecting Suaeda salsa L. chlorophyll fluorescence response to salinity stress by using hyperspectral reflectance. Acta Physiologiae Plantarum, 34, 581-588.
13.Etesami, H., & Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and environmental safety, 147, 881-896.
14.Laane, H. M. (2018). The effects of foliar sprays with different silicon compounds. Plants, 7 (2), 45.
15.Tubana, B. S., & Heckman, J. R. (2015). Silicon in soils and plants. Silicon and plant diseases, 7-51.
16.Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S. A., & Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environmental Science and Pollution Research, 22, 15416-15431.
17.Yan, G. C., Nikolic, M., YE, M. J., Xiao, Z. X., & Liang, Y. C. (2018). Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture, 17 (10), 2138-2150.
18.Maswada, H. F., Mazrou, Y. S., Elzaawely, A. A., & Eldein, S. M. A. (2020). Nanomaterials. Effective tools for field and horticultural crops to cope with drought stress: A review. Spanish journal of agricultural research, 18 (2), 15.
19.Liu, W. T. (2006). Nanoparticles and their biological and environmental applications. Journal of bioscience and bioengineering, 102 (1), 1-7.
20.Mathur, P., & Roy, S. (2020). Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiology and Biochemistry, 157, 114-127.
21.Shariat, A., Karimzadeh, G., Assareh, M. H., & Hadian, J. (2017). Variations of physiological indices and metabolite profiling in Satureja khuzistanica in response to drought stress. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 25 (2), 232-246. [In Persian]
22.Baghbani-Arani, A., Modarres-Sanavy, S.A.M., Mashhadi-Akbar-Boojar, M., & Mokhtassi-Bidgoli, A. (2017). Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Industrial Crops and Products, 109, 346-357.
23.Ahmadi, H., Babalar, M., Askari Sarcheshmeh, M. A., & Morshedloo, M. R. (2020). The effect of water deficiency stress and citrulline on essential oil content, photosynthetic pigments and chlorophyll fluorescence of hyssop (Hyssopus officinalis L.) in different harvests. Iranian Journal of Horticultural Science, 52 (3), 593-604. [In Persian]
24.Ahmad, B., Khan, M. M. A., Jaleel, H., Shabbir, A., Sadiq, Y., & Uddin, M. (2020). Silicon nanoparticles mediated increase in glandular trichomes and regulation of photosynthetic and quality attributes in Mentha piperita L. Journal of Plant Growth Regulation, 39, 346-357.
25.El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., & Schwab, F. (2021). Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 16 (3), 344-353.
26.Haghighi, M., & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117.
27.Lightenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350-382.
28.Rostami, G., Moghaddam, M., Saeedi Pooya, E., & Ajdanian, L. (2019). The effect of humic acid foliar application on some morphophysiological and biochemical characteristics of spearmint (Mentha spicata L.) in drought stress conditions. Environmental Stresses in Crop Sciences, 12 (1), 95-110. [In Persian]
29.Ramezan, G., & Abbaszadeh, B. (2016). The effect of drought stress on yield, content and percentage of essential oil of Nepeta pogonosperma Jamzad et Assadi under different plant density. Iranian Journal of Medicinal and Aromatic Plants Research, 31 (6), 1071-1085. [In Persian]
30.Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104 (3).
31.Malik, M. A., Wani, A. H., Mir, S. H., Rehman, I. U., Tahir, I., Ahmad, P., & Rashid, I. (2021). Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiology and Biochemistry, 165, 187-195.
32.Seyed lor, L., tabatabaei, J., & Fallahi, E. (2009). The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticultural Science, 23 (1). [In Persian]
33.Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N., & Al-Otaibi, A. (2019). Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry, 139, 1-10.
34.Gorgini Shabankareh, H., & Khorasaninejad, S. (2017). Effects of sodium nitroprusside on physiological, biochemical and essence characteristics of savory (Satureja khuzestanica) under deficit water regimes. Journal of plant production, 24 (3), 55-70. [In Persian]
35.Sayyari, M., Moradi Farsa, M., & Azizi, A. (2022). The Effect of Drought Stress at Different Developmental Stages on Growth and Some Phytochemical Parameters of Nepeta crispa. Journal
of Crops Improvement
, 24 (2), 545-561. [In Persian]
36.Ghaderi, A. A., Fakheri, B. A. R. A. T. A. L. I., & Nezhad, N. M. (2018). Evaluation of the morphological and physiological traits of thyme (thymus vulgaris L.) under water deficit stress and foliar application of ascorbic acid. Journal of Crops Improvement, 19 (4). [In Persian]
37.Zaefyzadeh, M., Quliyev, R. A., Babayeva, S., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of biology, 33 (1), 1-7.
38.Dastborhan, S., & Ghassemi-Golezani, K. (2015). Influence of seed priming and water stress on selected physiological traits of borage. Folia Horticulturae, 27 (2), 151-159.
39.Kimiaei, M. R., Sirousmehr, A., & Fakheri, B. A. (2022). The Effect of Silicon on Quantitative and Physiological Characteristics of Borage (Borago officinalis L.) under Irrigation Regimes. Journal of Crops Improvement, 24 (2), 631-643. [In Persian]
40.Bhardwaj, S., & Kapoor, D. (2021). Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiology and Biochemistry, 166, 1044-1053.
41.Lauriano, J. A., Ramalho, J. C., Lidon, F. C., & doCéu Matos, M. (2006). Mechanisms of energy dissipation in peanut under water stress. Photosynthetica, 44, 404-410.
42.Ranjbar, F. A., & Dehghani, B. R. (2016). Impact of salinity stress on photochemical efficiency of photosystem ii, chlorophyll content and nutrient elements of nitere bush (Nitraria schoberi L.) Plants.
43.Lee, T. Y., Woo, S. Y., Kwak, M. J., Inkyin, K., Lee, K. E., Jang, J. H., & Kim, I. R. (2016). Photosynthesis and chlorophyll fluorescence responses of Populus sibirica to water deficit in
a desertification area in Mongolia. Photosynthetica, 54, 317-320.
44.Falqueto, A. R., da Silva Júnior, R. A., Gomes, M. T. G., Martins, J. P. R., Silva, D. M., & Partelli, F. L. (2017). Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Scientia Horticulturae, 224, 238-243.
45.Afshar Mohamadian, M., Omidipour, M., & Jamal Omidi, F. (2018). Effect of different drought stress levels on chlorophyll fluorescence indices of two bean cultivars. Journal of Plant Research (Iranian Journal of Biology), 31 (3), 511-525. [In Persian]
46.Soheili Movahhed, S., Esmaeili, M., Jabbari, F., Khorramdel, S., & Fouladi, A. (2017). Effects of water deficit on Relative Water Content, Chlorophyll Fluorescence indices and seed yield in four pinto bean genotypes. Journal of Crop Production, 10 (1), 169-190. [In Persian]
47.Mehraban Joubani, P., Barzegar, A., Barzegar Golchini, B., Ramezani Sayyad, A., & Abdolzadeh, A. (2019). Comparison of effects of iron excess and application of silicon on fluorescence of chlorophyll in shoot and developmental changes in root of rice seedlings. Iranian Journal of Plant Biology, 11 (3), 17-32. [In Persian]
48.Verma, K. K., Song, X. P., Zeng, Y., Guo, D. J., Singh, M., Rajput, V. D., ... & Li, Y. R. (2021). Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 166, 582-592.
49.Zhang, Y., Yu, S. H. I., Gong, H. J., Zhao, H. L., Li, H. L., Hu, Y. H., &  Wang, Y. C. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17 (10), 2151-2159.
50.Moradi, M., abedy, B., Aroiee, H., Aliniaeifard, S., & Ghasemi Bezdi, K. (2023). Effect of Different Light Spectral on Photosynthetic Performance, Growth Indicators and Essential Oil Content of Salvia officinalis L. Journal Of Horticultural Science. [In Persian]
51.Mathur, S., Allakhverdiev, S. I., & Jajoo, A. (2011). Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807 (1), 22-29.