مطالعه خصوصیات فیزیولوژیک و بیوشیمیایی گیاه دارویی نعناع فلفلی (Mentha piperita L) در واکنش به تنش شوری تحت تاثیر همزیستی با قارچ Piriformospora indica

نوع مقاله: پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه صنعتی شاهرود

2 پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

سابقه و هدف: با توجه به گستردگی شوری در خاک‌های ایران، میزان بالای شوری آب و خاک می تواند کیفیت محصول و بهره وری را محدود کند. از سوی دیگر با توجه به افزایش تقاضای جهانی برای استفاده از گیاهان دارویی از جمله نعناع فلفلی، امروزه استفاده از ریزجانداران همزیست با گیاه یکی از راهبردهای نوین برای بهبود و افزایش عملکرد گیاهان در شرایط نامطلوب محیطی مانند شوری آب و خاک است. بنابراین، مطالعه پیش رو با هدف ارزیابی تأثیر همزیستی قارچ شبه میکوریز Piriformospora indica بر بهبود رشد گیاه دارویی نعناع فلفلی در شرایط شور طراحی و اجرا شد.
مواد و روش‌ها: این آزمایش در گلخانه تحقیقاتی پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان واقع در دانشگاه علوم کشاورزی و منابع طبیعی ساری به صورت فاکتوریل در قالب طرح بلوک های کامل تصادفی با سه تکرار در سال 1394 اجرا شد. در این پژوهش دو عامل همزیستی با قارچ پیریفورموسپورا ایندیکا (شاهد و تلقیح با قارچ) و چهار سطح شوری (آبیاری با آب شور حاوی مخلوط آب دریای خزر و آب مقطر شامل چهار سطح صفر، سه، شش و نه دسی‌زیمنس بر متر) مورد مطالعه قرار گرفتند. متغیرهای اندازه گیری شده شامل وزن خشک برگ، درصد کلونیزاسیون ریشه، طول ریشه، درصد نشت یونی، پراکسیداسیون لیپید، میزان فنل کل برگ، فلاونوئید، آنتوسیانین و فعالیت آنتی اکسیدانی (آنزیم های کاتالاز، سوپراکسیددیسموتاز، پلی فنل اکسیداز، مهار رادیکال DPPH) بود.
یافته‌ها: نتایج نشان داد با افزایش شوری میزان کلونیزاسیون ریشه، وزن خشک برگ و طول ریشه کاهش در حالی که فعالیت آنزیم کاتالاز، سوپراکسیددیسموتاز، پلی فنل اکسیداز، مهار رادیکال DPPH، محتوای فنل کل برگ، فلاونوئید، آنتوسیانین، درصد نشت یونی و پراکسیداسیون لیپید افزایش یافت. همچنین، همبستگی بالا و معنی داری بین فعالیت آنتی اکسیدانی با میزان فنل (**95/0 =r) مشاهده شد براین اساس، گیاهانی که ترکیبات فنلی بالاتری داشتند، فعالیت ضد رادیکال های آزاد بالاتری نشان دادند. از طرفی همزیستی قارچی سبب بهبود وزن خشک گیاه و طول ریشه و آنزیم های آنتی اکسیدان و ترکیبات فنولیک مورد مطالعه شد. تیمار زیستی، همچنین، باعث کاهش اثرات منفی شوری بر پایداری غشا و پراکسیداسیون غشا سلول، و از طرفی موجب فعالیت بهتر آنزیم های آنتی اکسیدان در شرایط شور شد. به طور کلی گیاهان همزیست شده با قارچ P. indica از نظر عملکرد و رشد بهتر از گیاهان همزیست نشده بودند، ولی این افزایش عملکرد تحت تاثیر میزان همزیستی در سطوح مختلف شوری قرار گرفت.
نتیجه گیری: در مجموع، کاربرد قارچ P. indica علاوه بر تحریک گیاه برای افزایش سنتز ترکیبات فنولیک، با گسترش سیستم ریشه ای به وسیله هیف های قارچی موجب تخفیف اثرات تنش شوری در گیاه دارویی نعناع فلفلی شد. بنابراین، به نظر می رسد کاربرد این قارچ بتواند با افزایش مقاومت به شوری تا حدود زیادی ویژگی های رشدی گیاه دارویی نعناع فلفلی را در چنین شرایطی بهبود بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study the physiological and biochemical properties of peppermint (Mentha pipertis L.) in response to salt stress and coexistence with Piriformospora indica fungi

چکیده [English]

Background and objectives: In Iran, salinity extension of soils along with high levels of salinity of water limit quality of product and productivity. Since, in the recent years global demand for the use of medicinal herbs such as peppermint is increasing, nowadays the use of microorganisms that have a symbiotic relationship with plants is a new strategies to improve the environmental performance of the plants in adverse conditions such as saline water and soil. In this study, therfore, the effect of symbiotic mycorrhiza like fungi, Piriformospora indica on growth improvement of peppermint was designed and implemented under salt condition.
Materials and methods: The experiment was at conducted at Genetics and Agricultural Biotechnology Institute of Tabarestan at Sari the Agricultural Sciences and Natural Resources University in factorial arrangement based on randomized complete block design with three replications in 2015. Two factors including P. indica symbiosis and uninoculated control and four salinity levels (irrigation and distilled water and the Caspian Sea water mixture at of 0, 3, 6 and 9 dS. m-1). The parameters were studied such as leaf dry weights, root colonization, root length, lipid peroxidation, ion leakage, total phenol content of leaves, flavonoids, anthocyanins and the antioxidant enzymes activity (catalase, superoxide dismutase, and polyphenol oxidase, radical scavenging DPPH) were measured.
Results: Results showed that with increasing salinity the root colonization, leaf dry weight and root length decreased, while catalase, superoxide dismutase, and polyphenol oxidase, radical scavenging DPPH, total phenol content of leaves, flavonoids, anthocyanins, lipid peroxidation and ion leakage were increased. There was a significant correlation (r= 0.95**) between antioxidant activity and phenol content, as a result, the plants showed with high phenolic compounds, they have higher than the radical anti-radical activity. The symbiotic fungi improved plant dry weight, root length, phenolic compounds and antioxidant enzymes. Biological treatment also reduced the negative effects of salinity on membrane peroxidation and cell membrane stability, and also induced better the activity of antioxidant enzymes in saline conditions. Generally the P. indica inoculated plants performed better than the non-inoculated plants in terms of growth performance, but this increase was affected by salinity levels.
Conclusion: In addition, the use of P. indica, not only stimulate the plant to increase the synthesis of phenolic compounds, but also developed the root system by fungal hyphae resulted in alleviating the effect of salinity in the peppermint. Therefore, it seems that p. indica could induce salt tolerance and roughly improve growth parameters of peppermint plants.

کلیدواژه‌ها [English]

  • Anthocyanins
  • antioxidants
  • growth
  • total flavonoids
  • total phenol
1.Abbaspoor, H. and Rezaei, H. 2014. Effect
of gibberellic acid on Hill reaction rate,
photosynthetic pigments and phenolic
compounds in plants under drought stress
conditions (Dracocephalum moldavica L.)
Badrashbu drug. Plant Res. 27: 5. 893-903.
(In Persian)
2.Abe, N., Murata, T. and Hirota, A. 1998.
Novel 1, 1-diphenyl-2-picryhy- drazylradical scavengers, bisorbicillin and
demethyltrichodimerol, from a fungus.
Biosci. Biotech. Biochem. 62: 661-662.
3.Arora, A., Sairam, R.K. and Srivastava,
G.C. 2002. Oxidative stress and
antioxidative system in plants. Int. J.
Curr. Sci. 82: 10. 1227-1235.
4.Bagheri, S., Ebrahimi, M.A., Davazdah
Emami, S. and Minooyi Moghadam, J.
2014. Terpenoids and phenolic compounds
production of mint genotypes in response to
mycorrhizal bio-elicitors. Tech. J. Eng.
Appl. Sci. 4: 4. 339-348.
5.Bideshki, A. and Arvin, M.J. 2010. Effect
of salicylic acid (SA) and drought stress
on growth, bulb yield and allicin content
of garlic (Allium sativum) in field. Plant
Ecophysiol. 2: 73-79.
6.Chaparzadh, N. and Zarand Miandoab, L.
2010. Effect of salinity on pigments
content and growth of two cultivars of
rapeseed (Brassica napus). Plant Biol.
9: 13-26.
7.Charitah, D.M. and Reddy, M.N. 2002.
Phenolic acid metabolism of groundnut
(Arachis hypogaea L.) plants inoculated
with VAM fungus and Rhizobium. J.
Plant Growth Regul. 37: 151-156.
8.Dell Rio, L.A., Copas, F.J., Sandalio,
L.M., Palma, J.M. and Barroso, J.B.
2003. Plant peroxisomes, reactive oxygen
metabolism and nitric oxide. Biochem.
Mol. Biol. Life. 55: 71-81.
9.Deshmukh, S., Huckelhoven, R., Schafer,
P., Imani, J., Sharma, M., Weiss, M.,
Waller, F. and Kogel, K.H. 2006. The
root endophytic fungus Piriformospora
indica requires host cell death for
proliferation during mutualistic symbiosis
with barley. Proc. Nati. Acad. Sci.
103: 18450-18457.
10.Druege, U., Baltruschat, H. and
Franken, P. 2007. Piriformospora indica
promotes adventitious root formation in
cuttings. J. Sci. Hortic. 112: 422-426.
<strong
>11.Esfandiari, A.A., Javadi, A. and
Shokrpur, D. 2013. Evaluation of
biochemical and physiological
characteristics of wheat cultivars in
response to salt stress in seedling stage. J.
Crop Improv. 15: 1. 27-38. (In Persian)
12.Eshghizadeh, H.F. and Ehsanzadeh, C.
2009. The effect of different irrigation
regimes on maize hybrids: chlorophyll
fluorescence I, growth characteristics
and grain yield. Iran. J. Field Crop Sci.
40: 2. 144-135. (In Persian)
13.Fahimirad, S., Ghasem Karimzadeh, G.
and Ghanati, F. 2013. Cold-induced
changes of antioxidant enzymes activity
and lipid peroxidation in two canola
(Brassica napus L.) cultivars. J. Plant
Physiol. Breed. 3: 1. 1-11.
14.Fatiha, B., Didier, H., Naima, G.,
Khodir, M., Martin, K., Kamagaju
Léocadie, K., Caroline, S., Mohamede,
C. and Pierre, D. 2015. Phenolic
composition, in vitro antioxidant effects
and tyrosinase inhibitory activity of
three Algerian mentha species: M.
spicata (L.), M. pulegium (L.) and M.
rotundifolia (L.) Huds (Lamiaceae). Ind
Crops Prod. 74: 722-730.
15.Fazaeli, A., Besharati, H. and Pirvali
Biranvand, N. 2010. Effect of salinity on
symbiotic efficiency Sinorhizobium
Meliloti with different varieties of
alfalfa, Iran. J. Soil Res. (Formerly
Soil and Water Science). 3: 253-263.
(In Persian)
16.Fester, T. and Hause, G. 2005.
Accumulation of reactive oxygen
species in arbuscular mycorrhizal roots.
Mycorrhiza. 15: 373-379.
17.Ghasemi, A.S. 2008. Medicinal and
Aromatic Plants, to examine their
effects. Islam Azad University
Shahrekord, 541p. (In Persian)
18.Hajbagheri, S. and Enteshari, S.H. 2011.
Effects of mycorrhizal fungi on some
physiological characteristics of salt
stressed Ocimum basilicum L. J.
Physiol. 1: 215-222.
19.Hichem, H., Mounir, D. and Naceur,
E.A. 2009. Defferential responses of two
maize (Zea mays L.) varieties to salt
stress: Changes on polyphenols
composition of foliage and oxidative
damages. Ind Crops Prod. 30: 144-151.
20.Ho, S., Chao, Y., Tong, W. and Yu, S.
2001. Sugar coordinately and
differentially regulates growth and
stress-related gene expression via a
complex signal transduction network
and multiple control mechanisms. J.
Plant. Physiol. 125: 877-890.
21.Hoekstra, F.A., Golovina, E.A. and
Buitink, J. 2000. Mechanisms of plant
desiccation tolerance. J. Trends Plant
Sci. 6: 9. 431-438.
22.Jovanka, M.D., Nemanja, S., Svetlana,
R., Zivko, J., Aleksandar, M. and Vesna,
M. 2013. Differential response of three
contrasting pea (Pisum arvense,
P. sativum and P. fulvum) species to
salt stress: assessment of variation
in antioxidative defence and miRNA
expression. Aust. J. Crop Sci.
7: 13. 2145-2153.
23.Karami, A. and Zarea, M.J. 2014.
Physiological and nutritional response of
inoculated alfalfa (Medicago sativa.
cv. hamedani) with the fungus
Piriformospora indica and bacterium
Azospirillum spp under salt stress. J.
Crop Prod. 7: 1. 109-129. (In Persian)
24.Kari Dolatabadi, H., Mohammadi Gol
Tapeh, E., Moeini, A. and Verma, A.
2012. Evaluation of the effect of
concentration of auxin and fungi
Piriformospora indica and Sebacina
vermifera the peppermint (Mentha
piperita) and thyme (Thymus vulgaris)
in vitro. JMP. 2: 9. 13-22.
25.Kaya, C., Ashraf, M., Sonmez, O.,
Aydemir, S., Tuna, A.L. and Cullu,
M.A. 2009. The influence of arbuscular
mycorrhizal colonisation on key growth
parameters and fruit yield of pepper
plants grown at high salinity. J. Sci.
Hortic. 121: 1-6.
26.Khorshidi, M., Bychranlv, B. and
Bagheri, M. 2013. Increased maize
seedling tolerance to temperature
changes through three species of
mycorrhizal symbiosis. J. Agric.
Sustain. Prod. Pp: 187-200. (In Persian)
27.Kiarostami, K.H., Mohseni, R. and
Saboora, A. 2010. Biochemical changes
of Rosmarinus officinalis under salt
stress. J. Stress Physiol. Biochem.
6: 3. 114-122.
28.Krizek, D.T., Britz, S.J. and Mirecki,
R.M. 1998. Inhibitory effects of ambient
levels of solar UV-A and UV-B
radiation on growth of cv. New Red Fire
lettuce. Physiol. Plant. 103: 1-7.
29.Lee, J. and Scagel, C.F. 2009. Chicoric
acid found in basil (Ocimum basilicum
L.) leaves. J. Food Chem. 115: 650-656.
30.Liu, C.Y. and Wu, Q.S. 2014.
Relationships between mycorrhizas
and antioxidant enzymes in citrus
(Citrus Tangerina) seedlings inoculated
with Glomus Mosseae. Pak. J. Bot.
46: 3. 1125-1128.
31.Mousavi Nodoshan, S., Owlia, P.,
Moein Najafabadi, L., Rasooli, I.,
Saderi, H. and Salari, M.H. 2010. Effect
of sub inhibitory concentrations of
essential oils of Mentha spicata and
Cumminum Cyminum on virulence
factors of pseudomonas aeroginusa. J.
Med Plants. 9: 124-130.
32.Nabati, C., Nezami, M., Rezvan
Moghaddam, P., Masoumi, A. and Zare
Mehrjard, D. 2013. Effect of salinity at
different growth stages on the quantity
and quality of forage kochia. Elec. J.
Crop Prod. 5: 2. 111-128. (In Persian)
33.Nahiyan, A.S.M. and Matsubara, Y.
2012. Tolerance to fusarium root rot
and changes in antioxidative ability in
mycorrhizal asparagus plants. Hortic.
Sci. 47: 3. 356-360.
34.Norris, I.R., Read, D.J. and Varma, A.K.
1992. Methods in microbiology. Techn
Study Mycorrhiza. Academic Press,
London. 450p.
35.Peskan-Berghofer, T., Shahollari, B.,
Pham-Huong-Giong Hehl, S., Markert,
C., Blanke, V., Kost, G., Varma, A. and
Olmuller, R. 2004. Association of
Piriformospora indica with arabidopsis
thaliana roots represents a novel system
to study beneficial plant-microbe
interactions and involves early plant
protein modifications in the endoplasmic
reticulum and at the plasma membrane.
J. Physiol. Plant. 122: 465-477.
36.Pirdashti, H., Yaghoubian, Y.,
Mohammadi Goltapeh, E. and Hosseini,
S.J. 2012. Effect of mycorrhiza-like
endophyte (Sebacina vermifera) on
growth, yield and nutrition of rice
(Oryza sativa L.) under salt stress.
J. Agric Tech. 5: 1651-1661.
37.Qanati, F., Bakhtiari, S. and Abdul
Maliki, C. 2010. Effects of methyl
jasmonate on secondary metabolites of
marigold (Calendula officinalis L.).
Biotechnol Tarbiat Modares. 1: 21. 33.
(In Persian)
38.Rabie, G.H. and Almadani, A.M. 2005.
Role of bio-inoculants in development
of salt tolerance of Vicia faba plant
under salinity stress. Afr. Biotechnol.
4: 210-222.
39.Rice-Evance, C.A., Miller, N.J. and
Paganga, G. 1997. Antioxidant
properties of phenolic compounds.
Trend. Plant Sci. 2: 152-159.
40.Roodbari, N., Roodbari, S., Ganjali, A.
and Ansarifar, M. 2013. The effect of
salinity stress on growth parameters and
essential oil percentage of peppermint
(Mentha piperita L.). Int. J. Basic Appl.
Sci. 1: 294-299.
41.Ruiz-Lozano, J.M., Collados, C., Barea
J.M. and Azcon, R. 2001. Cloning of
cDNAs encoding SODs from lettuce
plants which show differential
regulation by arbuscular mycorrhizal
symbiosis and by drought stress. J. Exp.
Bot. 52: 2241-2242.
42.Sangwan, N.S., Farooqi, A.H.A.,
Shabih, F. and Sangwan, R.S. 2001.
regulation of essential oil production in
plants. J. Plant Growth Regul. 34: 3-21.
43.Sannazzaro, A.I., Alberto, E., Ruiz, O.A.
and Menendez, B. 2005. Influence of the
arbuscular mycorrhizal fungus Glomus
intraradices on the saline stress
physiology of Lotus glaber. Lotus
Newsl. 35: 29-30.
44.Sepehry, M., Saleh Rastin, N., Hosseini
Salakadeh, Gh. and Khayyam Nekouei,
D. 2009. Effect of endophytic fungus
Piriformospora indica on growth and
resistance of barley (Hordeum vulgare
L.) to salinity. J. Range. Sci. 3: 508-518.
(In Persian)
45.Shatta, A. and EI-Shamei, Z. 1999.
Differentiation of eggplant (Solanum
melongena L.) polyphenoloxidase,
laccase and peroxidase using selective
substrates and inhibitors. Adv. Food Sci.
21: 79-83.
46.Thipyapong, P., Stout, M.J. and
Attajarusit, J. 2007. Functional analysis of
polyphenol oxidases by antisense/ sense
technology. Molecul. 12: 1569-1595.
47.Torabi, A. and Farzami Sepehr, M. 2015.
The effect of salt pretreated Glomus
fasciculatum on salinity tolerance
induction of barley plants. Iran J. Plant
Physiol. 5: 2. 1323-1331. (In Persian)
48.Turk, M.A., Assaf, T.A., Hameed, K.M.
and Tawaha, A.M. 2006. Significance of
mycorrhizae. World J. Agric. Sci. 2: 16-20.
49.Watkinson, J.I., Hendricks, L., Sioson,
A.A., Vasquez-Robinet, C., Verlyn, S.,
Heath, L.S., Schuler, M., Bohnert,
H.J., Bonierbale, M. and Grene,
R. 2006. Accessions of Solanum
toberosum Andigena show differences
in photosynthetic recovery after drought
stress as reflected in gene expression
profiles. J. Plant Sci. 18: 1-4.
50.Wu, Q.S., Zou, Y.N., Liu, W., Ye, X.F.,
Zai H.F. and Zhao, L.J. 2010. Alleviation
of salt stress in citrus seedlings
inoculated with mycorrhiza: changes in
leaf antioxdant defense systems. Plant
Soil Environ. 56: 470-475.
51.Zhang, J. and Kirkham, M.B. 1996.
Antioxidation responses to drought in
sunflower and sorghum seedling. New
Phytol. 132: 361-373.
52.Zhu, X.C., Song, F.B. and Liu, S.Q.
2011. Arbuscular mycorrhiza impacts on
drought stress of maize plants by lipid
peroxidation, proline content and
activity of antioxidant system. J. Food
Agric. Environ. 9: 583-587.