1.Sekine, H. (2021). Wheat grower payments for varietal use: comparison between Japan, Germany, and Australia. Japanese Journal of Agricultural Economics, 23, 18-31.
2.Chen, C., Ota, N., Wang, B., Fu, G., & Fletcher, A. (2023). Adaptation to climate change through strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment. Science of the Total Environment, 880, 163230.
3.Jiang, T.,Wang, B., Xu, X., Cao, Y., Li Liu, D., & He, L. (2022). Identifying sources of uncertainty in wheat production projections with consideration of crop climatic suitability under future climate. Agricultural and Forest Meteorology, 319, 108933.
4.Dobor, L., Barcza, Z., Hlásny, T., Árendás, T., Spitko, T., & Fodor, N. (2016). Crop sowing date matters: Estimation methods and effect on future yields. Agricultural and Forest Meteorology, 223, 103-115.
5.Taylor, C., Cullen, B., D'Occhio, M., Rickards, L., & Eckard, R. (2018). Trends in wheat yields under representative climate futures: implications for climate adaptation. Agricultural Systems, 164, 1-10.
6.Zhao, Y., Xiao, D., Tang, J., & Bai, H. (2019). Effects of climate change on the yield of major grain crops and its adaptation measures in China. Research of Soil and Water Conservation, 26, 317-326.
7.Cammarano, D., Payero, J., Basso, B., Stefanova, L., & Grace, P. (2013). Adapting wheat sowing dates to projected climate change in the Australian subtropics: analysis of crop water use
and yield. Crop and Pasture Science,63 (10), 974-986.
8.Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., & Izaurralde, R. C. (2015). The global gridded crop model intercomparison: data and modeling protocols for phase 1 (v1. 0). Geoscientific Model Development,8 (2), 261-277.
9.Waongo, M., Laux, P., & Kunstmann, H. (2015). Adaptation to climate change: the impacts of optimized sowing dates on attainable maize yields under rainfed conditions in Burkina Faso. Agricultural and forest meteorology, 205, 23-39.
10.Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., & Moore, A. D. (2014). APSIM–evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350.
11.Deryng, D., Sacks, W. J., Barford, C. C., & Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global biogeochemical cycles,
25 (2), 1-18.
12.Zhen-Zhen, Z., Shuang, C., Peng, F., Nian-Bing, Z., Zhi-Peng, X., Ya-Jie, H., Fangfu, X., Bao-Wei, G., Hai-Yan, W., & Hong-Cheng, Z. (2023). Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat. Journal of Integrative Agriculture,
22 (5), 1366-1380.
13.Leenhardt, D., & Lemaire, P. (2002). Estimating the spatial and temporal distribution of sowing dates for regional water management. Agricultural Water Management, 55 (1), 37-52.
14.Maton, L., Bergez, J. E., & Leenhardt, D. (2007). Modelling the days which are agronomically suitable for sowing maize. European journal of agronomy, 27 (1), 123-129.
15.Stöckle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European journal of agronomy, 18 (3), 289-307.
16.Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., & Bussière, F. (2003). An overview of the crop model STICS. European Journal of agronomy, 18 (3-4), 309-332.
17.Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J., Hunt, L. A., Singh, U., Lizaso, J. I., White, J. W., Uryasev, O., & Ogoshi, R. (2015). Decision Support System for Agrotechnology Transfer. Version 4.6. DSSAT Foundation, Prosser, WA.
18.Sacks, W. J., Deryng, D., Foley, J. A., & Ramankutty, N. (2010). Crop sowing dates: an analysis of global patterns. Global Ecology and Biogeography, 19 (5), 607-620.
19.Soltani, A., Nehbandani, A., Zainli, A., Torabi, B., Zand, A., Ghasemi, S., Elesti, A., Dadarsi, A., Hosseini, R. A., Aalimaqam , S. M., Zahid, M., Fayazi, H., Kemari, H., Arab Ameri, R., Mohammadzadeh, Z., Rehban, S., Mohammadi, S., & dignity, P. (2018). Preparation of the gap atlas of yield and production capacity of important agricultural plants in the country in current and future climatic conditions. The research plan of the Agricultural Research, Education and Promotion Organization. 274 p. [In Persian]
20.Wolf, J., Ouattara, K., & Supit, I. (2015). Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso. Agricultural and Forest Meteorology, 214, 208-218.
21.Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., LOTZE‐CAMPEN, H. E. R. M. A. N. N., Müller, C., Reichstein, M., & Smith, B. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology,
13 (3), 679-706.
22.Soltani, A., Alimagham, S. M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S., Pourshirazi, S., Alasti, O., Hosseini, R. S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadez, V., van Ittersum, M. K., & Sinclair, T. R. )2020(. SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems, 182, 102855.
23.Eitzinger, J., Trnka, M., Semerádová, D., Thaler, S., Svobodová, E., Hlavinka, P., Šiška, B., Takáč, J., Malatinská, L., Nováková, M., & Dubrovský, M. (2013). Regional climate change impacts on agricultural crop production in Central and Eastern Europe–hotspots, regional differences and common trends. The Journal of Agricultural Science, 151 (6), 787-812.
24.Waha, K., Van Bussel, L. G. J., Müller, C., & Bondeau, A. (2012). Climate‐driven simulation of global crop sowing dates. Global Ecology and Biogeography, 21 (2), 247-259.
25.Kucharik, C. J. (2008). Contribution of sowing date trends to increased maize yields in the central United States. Agronomy Journal, 100 (2), 328-336.