1.Pandey, D., Agrawal, M., & Bohra, J. S. (2012). Greenhouse gas emissions from rice crop with different tillage permutations in rice–wheat system. Agriculture, Ecosystems and Environment, 159, 133-144.
2.Shivanna, K. R. (2022). Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy, 88 (2), 160-171.
3.Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., & Rice, C. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the
Royal Society B: Biological Sciences, 363 (1492), 789-813.
4.Duxbury, J. M., & Mosier, A. R. (2022). Status and issues concerning agricultural emissions of greenhouse gases. In Agricultural dimensions of global climate change (pp. 229-258). Routledge.
5.Kahrizi, D., Rostami, A. H., & Akbarabadi, A. (2015). Feasibility cultivation of Camelina (Camelina sativa) as medicinal-oil Plant in Rainfed Conditions in Kermanshah-Iran's first report. Journal of Medicinal Plants and By-Products.
6.Monsefi, A., Norouzi Masir, M., & Izadi, Y. (2022). The effects of tillage systems and weed control methods on some physical and chemical properties in corn-wheat crop rotation. Agricultural Engineering, 45 (2), 183-205.
7.Battaglia, M. (2018). Crop residue management effects on crop production, greenhouse gases emissions, and soil quality in the Mid-Atlantic USA Virginia Tech.
8.Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., & West, P. C. (2011). Solutions for a cultivated planet. Nature, 478 (7369), 337-342.
9.Mosier, A. R., Halvorson, A. D., Reule, C. A., & Liu, X. J. (2006). Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality, 35 (4), 1584-1598.
10.Dachraoui, M. (2021). Effect of tillage systems on soil properties, water dynamics and greenhouse gas emissions in a continuous irrigated maize crop in semi-arid conditions, Universidad de Valladolid. Escuela Técnica Superior de Ingenierías AgrariasAutoridad UVA.
11.Sriprapakhan, P., Artkla, R., Nuanual, S., & Maneechot, P. (2021). Economic and ecological assessment of integrated agricultural bio-energy and conventional agricultural energy frameworks for agriculture sustainability. Journal of the Saudi Society of Agricultural Sciences, 20 (4), 227-234.
12.Fathi, A., Barari Tari, D., Fallah Amoli, H., & Niknejad, Y. (2020). Study of energy consumption and greenhouse gas (GHG) emissions in corn production systems: influence of different tillage systems and use of fertilizer. Communications in Soil Science and Plant Analysis, 51 (6), 769-778.
13.Estefan, G. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. International Center for Agricultural Research in the Dry Areas.
14.Seyedi, M., & Hamzei, J. (2021). Evaluation of Rapeseed Growth and Yield under Nitrogen Fertilizer in Rotation with Corn and Chickpea. Journal of Plant Production Research, 28 (1), 81-91.
15.Haroni, S., Sheikhdavoodi, M. J., & Kiani Deh Kiani, M. (2018). Application of Artificial Neural Networks for Predicting the Yield and GHG Emissions of Sugarcane Production. Journal of Agricultural Machinery, 8 (2), 389-401.
16.Hatirli, S. A., Ozkan, B., & Fert, C. (2005). An econometric analysis of energy input-output in Turkish agriculture. Renewable and Sustainable Energy Reviews, 9 (6), 608-623.
17.Harvey, L. D. (1993). A guide to global warming potentials (GWPs). Energy Policy, 21 (1), 24-34.
18.Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133 (3-4), 247-266.
19.Wang, W., & Dalal, R. (2006). Carbon inventory for a cereal cropping system under contrasting tillage, nitrogen fertilisation and stubble management practices. Soil and Tillage Research,
91 (1-2), 68-74.
20.Mohammadi, D., & Afzalinia, S. (2018). Economic Comparison of Conservation and Conventional Tillage Methods in Wheat-Cotton Rotation. Agricultural Mechanization and Systems Research, 19 (71), 109-124.
21.Adhikary, S., Biswas, B., & Priya, A. (2020). Conservation Agriculture: An Efficient Tool to Overcome the Drawbacks of Conventional Agricultural System towards Sustainable Crop Production. International Journal of Current Microbiology and Applied Sciences 9 (7), 1333-1340.
22.Zabolestani, M., Reshad Sedghi, A., & Salak Zamani, A. (2008). Evaluation and comparision of two surface tillage and conventional tillage methods on grain yeild and yeild components of wheat. Agroecology Journal, 4 (3), 39.
23.Rajabi, M. H., Zeinali, E., & Soltani, E. (2012). Evaluation of energy use in wheat production in Gorgan. Journal of Plant Production Research, 19 (3), 143-171.
24.Zahedi, M., Eshghizadeh, H. R., & Mondani, F. (2015). Evaluation of energy use efficiency and economical indices in safflower (Carthamus tinctorius L.) production system in Isfahan province. Journal of Agroecology, 4 (2), 45-57.
25.Dargahi, M. R., Jahan, M., Naseri,
M. T., & Ghorbani, R. (2016). Energy balance Evaluation and Economical Analysis of canola Production in Golestan Province. Applied Field Crops Research, 29 (3), 50-62.
26.Imanmehr, A. (2019). Investigation of energy efficiency and greenhouse gas emissions of safflower production in terms of environment. Journal of Researches in Mechanics of Agricultural Machinery, 8 (1).
27.Feyzbakhsh, M., & Soltani, A. (2013). Energy flow and global warming potential GWP of Corn farm (Gorgan city). Journal of Crop Production, 6 (3), 89-107.
28.Chauhan, N. S., Mohapatra, P. K., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking-An application of data envelopment analysis. Energy Conversion and Management, 47 (9-10), 1063-1085.
29.Boehmel, C., Lewandowski, I., & Claupein, W. (2008). Comparing annual and perennial energy cropping systems with different management intensities. Agricultural systems, 96 (1-3), 224-236.
30.Mazarei, M., Ghanbari, A., Dahmardeh, M., Siadat, S. A., & Dehdari, S. (2019). Assessment of yield and input-output energy and economic indicators in different tillage and fertilizer systems of corn (Zea mays L.). Journal of Agroecology, 11 (2), 417-434.
31.Tzilivakis, J., Warner, D. J., May, M., Lewis, K., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural systems, 85 (2), 101-119.
32.Ozlu, E., & Kumar, S. (2018). Response of surface GHG fluxes to long-term manure and inorganic fertilizer application in corn and soybean rotation. Science of the Total Environment,
626, 817-825.
33.Drenth, A., Olsen, D., Cabot, P., & Johnson, J. (2014). Compression ignition engine performance and emission evaluation of industrial oilseed biofuel feedstocks camelina, carinata, and pennycress across three fuel pathways. Fuel, 136, 143-155.