1.Moustaka, J., & Moustakas, M. (2023). Early-stage detection of biotic and abiotic stress on plants by chlorophyll fluorescence imaging analysis. Biosensors, 13 (8), 796.
2.Markulj Kulundžić, A., Sudarić, A., Matoša Kočar, M., Duvnjak, T., Liović, I., Mijić, A., Varga, I., & Viljevac Vuletić, M. (2024). Detailed insight into the behaviour of chlorophyll a fluorescence transient curves and parameters during different times of dark adaptation in sunflower leaves. Agronomy, 14 (5), 954.
3.Hassannejad, S., Lotfi, R., Ghafarbi, S. P., Oukarroum, A., Abbasi, A., Kalaji, H. M., & Rastogi, A. (2020). Early identification of herbicide modes of action by the use of chlorophyll fluorescence measurements. Plants, 9 (4), 529.
4.Tranel, P. J., & Wright, T. R. (2002). Resistance of weeds to ALS-inhibiting herbicides: what have we learned?. Weed science, 50 (6), 700-712.
5.Ali, L., Jo, H., Song, J. T., & Lee, J. D. (2020). The prospect of bentazone-tolerant soybean for conventional cultivation. Agronomy, 10 (11), 1650.
6.Roberts, A. G., Gregor, W., Britt, R. D., & Kramer, D. M. (2003). Acceptor and donor-side interactions of phenolic inhibitors in photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1604 (1), 23-32.
7.Fayez, K. A. (2000). Action of photosynthetic diuron herbicide on cell organelles and biochemical constituents of the leaves of two soybean cultivars. Pesticide Biochemistry and Physiology, 66 (2), 105-115.
8.Fufezan, C., Rutherford, A. W., & Krieger- Liszkay, A. (2002). Singlet oxygen production in herbicide- treated photosystem II. FEBS letters, 532 (3), 407-410.
9.Rutherford, A. W., & Krieger-Liszkay, A. (2001). Herbicide-induced oxidative stress in photosystem II. Trends in biochemical sciences, 26 (11), 648-653.
10.Abulnaja, K. O., Tighe, C. R., & Harwood, J. L. (1992). Inhibition of fatty acid elongation provides a basis for the action of the herbicide, ethofumesate, on surface wax formation. Phytochemistry, 31 (4), 1155-1159.
11.Abbaspoor, M., Teicher, H. B., & Streibig, J. C. (2006). The effect of root‐absorbed PSII inhibitors on Kautsky curve parameters in sugar beet. Weed Research, 46 (3), 226-235.
12.Zhang, C. J., Lim, S. H., Kim, J. W., Nah, G., Fischer, A., & Kim, D. S. (2016). Leaf chlorophyll fluorescence discriminates herbicide resistance in Echinochloa species. Weed Research, 56 (6), 424-433.
13.Søbye, K. W., Streibig, J. C., & Cedergreen, N. (2011). Prediction of joint herbicide action by biomass and chlorophyll a fluorescence. Weed Research, 51 (1), 23-32.
14.Avarseji, Z., Rashed Mohassel, M. H., Nezami, A., Abaspoor, M., & Nasiri Mahallati, M. (2015). The effect of clodinafop on chlorophyll fluorescence parameters and Kautsky curve of wild oat (Avena ludoviciana). Journal of Plant Protection, 29 (1), 32-42.
15.Kaiser, Y. I., Menegat, A., & Gerhards, R. (2013). Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in A lopecurus myosuroides. Weed Research, 53 (6), 399-406.
16.Abbaspoor, M., & Streibig, J. C. (2007). Monitoring the efficacy and metabolism of phenylcarbamates in sugar beet and black nightshade by chlorophyll fluorescence parameters. Pest Management Science: formerly Pesticide Science, 63 (6), 576-585.
17.Park, B., Wi, S., Chung, H., & Lee, H. (2024). Chlorophyll fluorescence imaging for environmental stress diagnosis in crops. Sensors, 24 (5), 1442.
18.Stirbet, A. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104 (1-2), 236-257.
19.Cobb A. H., & Reade J. P. H. (2011). Herbicides and Plant Physiology. Wiley-Blackwell; 2nd edition. United Kingdom, West Sussex.
20.Battaglino, B., Grinzato, A., & Pagliano, C. (2021). Binding properties of photosynthetic herbicides with the QB site of the D1 protein in plant photosystem II: a combined functional and molecular docking study. Plants, 10 (8), 1501.
21.Hiraki, M., van Rensen, J. J., Vredenberg, W. J., & Wakabayashi, K. (2003). Characterization of the alterations of the chlorophyll a fluorescence induction curve after addition of photosystem II inhibiting herbicides. Photosynthesis research, 78, 35-46.
22.Rea, G., Polticelli, F., Antonacci, A., Scognamiglio, V., Katiyar, P., Kulkarni, S. A., & Giardi, M. T. (2009). Structure‐based design of novel Chlamydomonas reinhardtii D1‐D2 photosynthetic proteins for herbicide monitoring. Protein Science, 18 (10), 2139-2151.
23.Takano, H. K., Benko, Z. L., Zielinski, M. M., Hamza, A., Kalnmals, C. A., Roth, J. J., Bravo-Altamirano, K., Siddall, T., Satchivi, N., Church, J. B., & Riar, D. S. (2023). Discovery and Mode-of-Action Characterization of a New Class of Acetolactate Synthase-Inhibiting Herbicides. Journal of Agricultural and Food Chemistry, 71 (47), 18227-18238.
24.Aguiar, A. S., Costa, R. F., Borges, L. L., Dias, L. D., Camargo, A. J., & Napolitano, H. B. (2023). Molecular basis of two pyrimidine-sulfonylurea herbicides: from supramolecular arrangement to acetolactate synthase inhibition. Journal of Molecular Modeling, 29 (8), 241.
25.Zhao, X., Xie, Q., Song, B., Riaz, M., Lal, M. K., Wang, L., Lin, X., & Huo, J. (2024). Research on phytotoxicity assessment and photosynthetic characteristics of nicosulfuron residues on Beta vulgaris L. Journal of Environmental Management, 353, 120159.
26.Zhou, Q., Liu, W., Zhang, Y., & Liu, K. K. (2007). Action mechanisms of acetolactate synthase-inhibiting herbicides. Pesticide Biochemistry and Physiology, 89 (2), 89-96.
27.Avarseji, Z., & Mohammadvand, E. (2018). Studying the effect of mesosulfuron methyl+ iodosulfuron methyl on chlorophyll fluorescence parameters of Phalaris minor. Plant Productions, 41 (3), 63-72.