القای جنین های پارتنوژنز و تولید گیاهان هاپلوئید خیار (.Cucumis sativus L)

نوع مقاله : پژوهشی

نویسندگان

1 کارشناس ارشد

2 عضو هیئت علمی

3 رییس بخش تحقیقات کشت بافت و سلول- پژوهشکده بیوتکنولوژی کشاورزی

4 معاون پژوهشی پژوهشکده کشاورزی هسته ای

چکیده

سابقه و هدف: گیاهان هاپلوئید به گیاهانی اطلاق می‌شود که تعداد کروموزوم‌های آنها در مرحله اسپروفیتی (n2) برابر با مرحله گامتوفیتی (n) باشد. هدف اصلی از تولید گیاهان هاپلوئید رسیدن به لاین‌های دابل‌هاپلوئید مطلوب جهت پیشبرد برنامه‌های اصلاحی می‌باشد. با استفاده از ارقام هیبرید F1 حاصل از تلاقی لاین‌های خالص با صفات مطلوب، بهره‌وری محصول را تا حد زیادی می‌توان افزایش داد. بنابراین لاین‌های خالص در برنامه‌های اصلاحی و تحقیقات ژنتیکی بسیار ارزشمند هستند. تولید لاین‌های خالص در روش‌های کلاسیک و با استفاده از خودگشنی نیازمند زمان و هزینه بسیار زیادی می‌باشد و به هیچ وجه امکان ندارد که این لاین‌ها صددرصد خالص باشند. لذا روش‌های پیشرفته و جدید جایگزین کارآمدتر و پایدارتر از روش‌های سنتی هستند. پرتوتابی دانه‌گرده عمده‌ترین روش مورد استفاده برای القای بکرزایی در گیاهان خانواده کدوئیان است. بر اساس آزمایشات قبلی، محققان بر سر برتری دزهای 300 و 500 گری پرتو گاما اختلاف نظر دارند. با این وجود در هیچ پژوهش جامع منتشر شده‌ای این دو دز پرتو بطور همزمان با هم مقایسه نشده‌اند. لذا این تحقیق با هدف بررسی امکان القای جنین‌های هاپلوئید در ارقام مختلف خیار از طریق گرده‌افشانی با دانه‌های گرده پرتوتابی شده توسط دزهای 300 و 500 گری پرتو گاما و تعیین مناسبترین دز پرتوتابی جهت تولید گیاهان هاپلوئید در ژنوتیپ‌های مختلف خیار انجام گرفت.
مواد و روش‌ها: در این مطالعه اثر دزهای مختلف پرتوتابی و ژنوتیپ گیاهان مادری بر تشکیل میوه، تولید دانه، القای جنین‌های پارتنوژنز پس از گرده‌افشانی با گرده‌های پرتوتابی شده و تولید گیاهان هاپلوئید مورد بررسی قرار گرفت. آزمایش به صورت فاکتوریل (دز پرتو گاما و ژنوتیپ گیاه) بر پایه طرح کاملاً تصادفی با 6 تکرار اجرا گردید. هفت ژنوتیپ مختلف خیار شامل ارقام نگین، اکسترم، کریم و سوپر دامینوس (F1)، بیت آلفا (OP)، باسمنج تبریز و دستجرد اصفهان توسط گرده‌های پرتوتابی شده با دزهای 300 و 500 گری پرتو گاما گرده‌افشانی شدند. رنگ‌آمیزی دانه‌گرده و رفتار لوله‌گرده یک روز بعد از پرتوتابی مورد بررسی قرار گرفت. دانه‌های استخراج شده از میوه‌ها از طریق کشت جنین در شرایط آزمایشگاهی نجات داده شدند و سطح پلوئیدی گیاهچه‌های بدست آمده توسط دستگاه فلوسایتومتری تعیین شد.
یافته‌ها: اثر دز پرتو گاما، ژنوتیپ و همچنین برهمکنش دز و ژنوتیپ بر تعداد دانه معنی‌دار بود. بیشترین میزان جنین پارتنوژنیک از پرتوتابی ژنوتیپ‌ اکسترم با دز 300 گری (25/2) و ژنوتیپ کریم (75/1) با دز 500 گری مشاهده گردید. از ژنوتیپ‌های نگین، اکسترم و آلفا بیت گرده‌افشانی شده با گرده‌های پرتوتابی شده توسط دز 500 گری هیچ جنین و هیچ گیاهی بدست نیامد. دزهای پرتوتابی بکار رفته اثر معنی‌داری بر روی تولید گیاه هاپلوئید نداشتند اما ژنوتیپ و خصوصاً برهمکنش دز و ژنوتیپ تاثیر معنی‌داری بر تولید گیاهان هاپلوئید خیار داشت. گرده‌افشانی ژنوتیپ اکسترم با گرده‌های پرتوتابی شده توسط دز 300 گری سبب تولید بیشترین گیاه هاپلوئید (25/1 در هر میوه) در این آزمایش شد.
نتیجه‌گیری: در این پژوهش همانند پژوهش‌های قبل تولید گیاهان هاپلوئید خیار با استفاده از گرده‌های پرتوتابی شده بعنوان روشی کارآمد و مفید در جهت تولید لاین‌های اینبرد تایید شد. بر اساس نتایج بدست آمده در این تحقیق ژنوتیپ‌های مختلف پاسخ-های متفاوتی را نسبت به دزهای مختلف پرتوتابی نشان می‌دهند و با تعیین شدت تابش مناسب پرتو گاما در هر ژنوتیپ می-توان جنین‌زایی پارتنوژنیک را القا نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Induction of parthenogenetic haploid embryos and production of haploid plants in cucumber (Cucumis sativus L.)

نویسندگان [English]

  • Mehran E. shariatpanahi 3
  • S.Sanaz Ramezanpour 2
3 ABRII
چکیده [English]

Background and objectives: Chromosomes number of haploid plants at the sporophyte (2n) stage is equal to the chromosomes number of the gametophyte (n) stage. The objective of haploid plant production is to obtain doubled haploid (DH) lines universally suited to breeding programs. Crop productivity can be greatly improved by using F1 hybrids, which are made by crossing pure lines with some important traits. These pure lines are very valuable in breeding programs and genetic researches. Production of pure lines in a conventional breeding program via self-fertilization takes a long time and requires high costs, but still may not be 100% homozygous. Alternative biotechnological approaches are by far more efficient and sustainable than traditional methods. The most common and best-known method of obtaining haploid cucurbit plants is via pollination with irradiated pollen, which induces parthenogenetic development of haploid embryos in plants. According to the previous reports, there has not been consensus for superiority of gamma ray doses between 300 and 500 Gy; however these two doses have not been simultaneously compared in any research study published so far. The aim of this study was to investigate the possibility of haploid embryos induction in different cucumber cultivars through pollination with gamma-irradiated pollen and determine the optimal dose of irradiation for cucumber haploid plants production.
Materials and methods: This research study was performed in a factorial experiment with two factors (gamma irradiation dose and plant genotype) based on a completely randomized design (CRD) with 6 replications. In this study the effects of irradiation doses and maternal genotypes on fruit set, seed production, parthenogenetic embryo induction were investigated after pollination by irradiated pollen and production of haploid plants in cucumber. Seven cucumber (Cucumis sativus L.) genotypes including, Extreme F1, Negin F1, Karim F1, Super Dominus F1, Beith Alpha OP, Basmenj and Dasgerdi were pollinated with gamma-rays irradiated pollen grains at doses including 300 and 500 Gy. The pollen viability and pollen tube behavior after irradiation were evaluated. The seeds extracted from the fruits were rescued by in vitro embryo culture, and the ploidy level of the plantlets obtained was determined by flow cytometry.
Results: The impact of different doses of gamma irradiation, genotype, and interaction of dose and genotype on total number of seeds produced were significant. The highest number of parthenogenic embryo were observed in genotype Extreme irradiated with dose of 300 Gy (2.25) and genotype Karim irradiated with dose of 500 Gy (1.75). No embryo and plant was obtained in genotypes Negin, Extreme and Beith Alpha irradiated with the dose of 500 Gy. The difference of various doses of irradiation on production of haploid plants was not significant, but genotype and especially interaction effect of dose and genotype were significant on production of haploid plants. Pollination of genotype Extreme by 300 Gy – irradiated pollen grains gave rise to the highest number of haploids (1.25Hs/fruit) produced in this experiment.
Conclusion: In this research study similar to previous studies, it was confirmed that production of haploid plants using irradiated pollen grains is an efficient method for producing haploid inbred lines in cucumber. According to our results, different genotypes exhibited different responses to various doses applied and parthenogenic embryogenesis can be induced when optimal dose of irradiation was applied in each genotype.

کلیدواژه‌ها [English]

  • Irradiation
  • Parthenogenesis
  • Embryo rescue
  • haploid
  • Cucumber
1.Abedini-Esfahlani, M., Saeedi, A., Karimzadeh, Gh. and Alizadeh, A. 2000. Study of different assessment methods of resistance to Fusarium graminearum spread in wheat spikes. J. Seed Plant.16: 4. 481-494. (In Persian)
2.Aghajani, M.A. 2015. A Survey on the predictability pattern of Fusarium blight disease. Elec. J. Res. Achieve. Improve. Crop Prod. 2:1. 69-86. (In Persian)
3.Aghajani, M.A., Frotan, A. and Kazemi, H. 2015. Executive instruction. Management Fusarium head blight disease. Iran. Res. Institute Plant Protect. 14p. (In Persian)
4.Bai, G. and Shaner, G. 1994. Scab of wheat: prospects for control. J. Plant Dis. 78: 8. 760-766.
5.Bai, G. and Shaner, G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42: 135-161.
6.Baghati, F., Rahnama, K., Aghajani, M.A. and Dehghan, M.A. 2012. Biological control of Fusarium head blight (Fusarium graminearum) by application of three native Trichoderma species in field. J. Plant Prod. 19: 2. 123-139. (In Persian)
7.Dehghan, M.A. and Ebrahimnejad, S. 2017. Evaluation of resistance and damage of Fusarium head blight in wheat Promising and advanced genotypes in hot and humid conditions in north of Iran. Crop Breed. 8: 20. 151-142. (In Persian)
8.Gilbert, J. and Woods, S. 2006. Strategies and considerations for multi-location FHB screening nurseries. In The global Fusarium initiative for international collaboration: a strategic planning workshop. CIMMYT, El Batàn, Mexico, Pp: 93-102.
9.Golzar, H. 1993. Distribution of Fusarium head blight in Gorgan and Gonbad areas and response of commercial wheat cultivars to disease. 33 Proceedings of the 11th Iranian Plant Protection Congress, Gillan Univ, Rasht. 33p. (In Persian)
10.Jones, R.K. and Mirocha, C.J. 1999. Quality parameters in small grains from Minnesota affected by Fusarium head blight. J. Plant Dis. 83: 6. 506-511.
11.Kolb, F.L. and Boze, L.K. 2003. An alternative to the FHB index: incidence, severity, kernel rating (ISK) index. In: S.M. Cantry, J. Lewis, and R.W. Ward, editors, Proceedings of the National Fusarium Head Blight Forum, Bloomington, MN. 13–15 Dec. 2003. Michigan State University, East Lansing, MN. 259p.
12.Khezri-Nejad, N. and Rezaee-Danesh, Y. 2016. Identification of Fusarium species associated with wheat, barly and corn in Azarbaijan province, Iran. Agro. Eco. J. 12: 4. 49-62. (In Persian)
13.Ireta, J. and Gilchrist, S. 1994. Fusarium Head Scab of Wheat (Fusarium graminearum Schwabe). Wheat Special Report No. 21b. Mexico, D.F, ClMMYT.
14.Malihipoor, A., Dehghan, M.A. and Shahbazi, K. 2017. Analysis of resistance to Fusarium spikelet blight disease in promising wheat genotypes of 1392, Wet and warm climate of North of Iran. Iran. J. Crop Sci. 49: 2. 25-40.
15.Malihipour, A., Dehgan, M., Shahbazi, K. and Barati, A. 2018. Reaction of Iranian wheat landraces to Fusarium head blight (FHB) under field and greenhouse conditions. J. Plant Prod. Res. 64: 53-66. (In Persian)
16.Mesterhazy, A. 1995. Types and components of resistance to Fusarium head blight of wheat. J. Plant Breed. 114: 5. 377-386.
17.Miedaner, T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. J. Plant Breed. 116: 3. 201-220.
18.Miyanabi, S., Mirabolfathi, M. and Gayatzamahrir, M. 2014. Molecular studys of Fusarium graminearum species group isolated of Wheat in Ardabil Province Iran. J. Agric. Biotech. 5: 1. 89-97. (In Persian)     
19.Mohammadi, M., Hasanpur, M., Ghojigh, H., Hoseinpur, T., Karimizadeh, R.A., Roustaee, M., Armiyon, M., Alatjafarbai, J. and Mehraban, A. 2015. Aftab Wheat suitable for cultivation under tropical dry farming conditions. Agricultural Education Publication, Iran, Gorgan, 10p. (In Persian)  
20.Norinia, A., Soghi, H.A., Mobsheri, T., Jafarian, J., Ghojigh, H., Sadegh Nejad, H.R., Kazemi Talachi, M. and Mohammadi, R. 2017. Technical instruction on wheat planting stage in Golestan province. Golestan Agricultural Jahad Gorgan Publication, Iran, Gorgan, 15p. (In Persian)  
21.Parry, D.W. 1990. The incidence of Fusarium spp. in stem bases of selected crops of winter wheat in the Midlands, UK. J. Plant Pathol. 39: 4. 619-622.
22.Parry, D.W., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals-a review. J. Plant Pathol. 44: 2. 207-238.
 23.Sabbagh, S., Kermanizadeh, B., Gholamalizadeh-Ahangar, A. and Sirousmehr, A. 2016. Effects of fertilizer treatments on components, performance components and induce resistance to wheat scab disease. Iran. J. Field Crop Sci. 47: 1. 77-85. (In Persian)
24.Safaee, N. and Alizadeh, A. 2006. Evaluation of temporal disease progress models of wheat Fusarium head blight and developing a forecasting modelfor Golestan province. J. Plant Dis.42: 597-617. (In Persian)
25.Sepahvand, N., Heydari, F. and Tutiyaei, A. 2009. Field and Molecular evaluation of resistance of Iranian bread wheats to Fusarium head blight. J. Agric. Biotech. 1: 1. 63-80. (In Persian)
26.Singh, R.P. and Van Ginkel, M. 1997. Breeding strategies for introgressing diverse scab resistances into adapted wheats. Fusarium Head Scab: Global Status and Future Prospects. H.J Dubin, L. Gilchrist, J. Reeves and A. McNab Eds., Mexico, DF: CIMMYT. Pp: 86-92.
27.Saleimianrizi, S., Navavbpour, S., Kalate Arabi, M. and Soltanloo, H. 2012. Evaluation of resistance and response of grain yield and yield components of spring wheat genotypes to Fusarium head blight. Elec. J. Crop Prod. 2: 4. 149-166. (In Persian)
28.Shi, J.R., Qiu, J.B., Dong, F., Xu, J.H., Ji, F., Liu, X. and Yu, M.Z. 2016. Risk of Fusarium toxins of wheat in China. J. Trit. Crop. 36: 129-135.
29.Tavakoli Hasanlou, N. 2014. Effect of potassium and nitrogen on changes of some wheat metabolites in the Fusarium blight disease of wheat spike. M.Sc. Thesis,Mohagheghe Ardebili University, Ardebil, Iran. (In Persian)
30.Verges, V.L. 2004. Breeding for Fusarium head blight resistance in soft red winter wheat. M.Sc. Thesis, University of Kentucky, 188p.
31.Villegas-Fernandez, A.M., Sillero, J.C. and Rubiales, D. 2011. Screening faba bean for chocolate spot resistance: evaluation methods and effects of age of host tissue and temperature. Euro. J. Plant Pathol. 132: 443-453.
32.Wegener, M. 1992. Optimierung Von Saatgutpillirungen mit mikrobiellen antagonisten zur biologischen Bekampfung von Fusarium culmorum (W.G.SM.) Sacc. In Weizen, Diplomarbeit, Universtot Gottingen, Germany.
33.Wiese, M.V. 1987. Compendium of wheat disease. 2nd ed., St Paul, MN, USA, APS Press, Phytopathological Society, America, 112p.