اثر پرایمینگ دمایی بر خصوصیات جوانه زنی، زراعی و روغن دانه ارقام گلرنگ (Carthamus tinctorius)

نوع مقاله: پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 گروه علوم کشاورزی، دانشکده کشاورزی، دانشگاه پیام نور، تهران

چکیده

سابقه و هدف: گلرنگ (Carthamus tinctorius) یکی از گیاهان دانه روغنی مناطق خشک و نیمه خشک می‌باشد که مرحله جوانه‌ زنی و غوزه‌دهی از حساس‌ترین مراحل رشدی گیاه گلرنگ محسوب می‌شود. بنابراین هدف از انجام مطالعه حاضر بررسی تاثیر پرایمینگ دمایی بر خصوصیات جوانه زنی بذر گلرنگ در آزمایشگاه و سپس ارزیابی تاثیر این نوع پرایمینگ بر برخی صفات زراعی، عملکرد و درصد روغن دانه ژنوتیپ های گلرنگ در مزرعه بود.
مواد و روش ها: در مرحله اول و در شرایط آزمایشگاه، اثر پرایمینگ دما شامل اعمال دماهای 40، 60 و 80 درجه سانتی گراد در 3 زمان شامل 6، 10 و 20 ساعت در قالب آزمایش فاکتوریل بر بذر ژنوتیپ‌های گلرنگ شامل 10 ژنوتیپ اعمال شد و صفات درصد جوانه زنی و سرعت جوانه زنی بذر اندازه گیری شد. در ادامه بر اساس نتایج مرحله اول، آزمایش فاکتوریل بر پایه طرح بلوک های کامل تصادفی با سه تکرار در شرایط مزرعه اجرا شد. تیمارهای آزمایش مزرعه ای شامل کشت بذر ژنوتیپ های گلرنگ پرایم شده در دمای 60 درجه سانتیگراد (به همراه بذر پرایم نشده به عنوان شاهد) در دو زمان 6 و 10 ساعت بود و در طی و پایان آزمایش، روز تا 50 درصد سبز شدن، روز تا رسیدگی کامل، تعداد غوزه در بوته، وزن هزار دانه، عملکرد دانه در بوته و درصد روغن دانه اندازه گیری شد.
یافته ها: نتایج مرحله اول نشان داد که تیمار پیش از کشت بذر با ترموپرایمینگ تاثیر معنی داری بر درصد و سرعت جوانه زنی داشت.
بیشترین درصد و سرعت جوانه زنی در سطوح دمایی 40 و 60 درجه سانتیگراد در مدت زمان کوتاه پرایمینگ (6 و 10 ساعت) به دست آمد. در شرایط مزرعه مطابق با نتایج حاصل از مرحله اول، پیش تیمار بذر با دمای 60 درجه سانتیگراد منجر به کاهش روز تا 50 درصد سبز شدن بذر ژنوتیپ‌های پرایم شده در مقایسه با ژنوتیپ‌های شاهد شد. از سوی دیگر پرایمینگ دمایی منجر به افزایش روز تا رسیدگی کامل، عملکرد دانه در بوته و درصد روغن گردید؛ اما تعداد دانه در غوزه تحت تاثیر پرایمینگ دمایی قرار نگرفت.
نتیجه گیری: به طور کلی نتایج بیانگر آن است که پیش تیمار بذر با پرایمینگ دمایی (دماهای متوسط) منجر به ظهور و استقرار سریع تر گیاهچه های گلرنگ در آزمایشگاه و مزرعه گردید. همچنین نتایج نشان داد که پیش تیمار دمایی بذر گلرنگ در 60 درجه سانتیگراد نه تنها بر عملکرد دانه و درصد روغن تاثیر منفی نداشته بلکه منجر به افزایش معنی دار صفات ذکر شده ژنوتیپ‌های پرایم شده در مقایسه با ژنوتیپ‌های پرایم نشده گردید. نکته قابل توجه این است که احتمالاً کشت بهاره بذر پرایم شده گلرنگ در مقایسه با بذر پرایم نشده می‌ تواند به بهبود و افزایش عملکرد دانه و عملکرد روغن منجر گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of thermo-priming on germination, agronomic characteristics and seed oil of safflower (Crthamus tinctorius) cultivars

نویسندگان [English]

  • Fereydoon Barazandeh 1
  • Mohammad.R Sabzalian 1
  • Mehdi Rahimmalek 1
  • Soraya Karami 2
1 Department of Agronomy and Plant Breeding, Isfahan University of Technology, Isfahan, Iran
2 Department of Agricultural Science, College of Agriculture, Payame Noor University (PNU), Tehran, Iran
چکیده [English]

Background and objective: Safflower (Carthamus tinctorius) is one of the oilseed crops in arid and semi-arid regions. Germination and heading stages are considered as the most sensitive developmental stages of safflower. Therefore, the aim of the present study was to determine the effect of thermo-priming on germination characteristics of the safflower seed in the laboratory and then, to evaluate the effect of this type of priming on some agronomic traits, yield and percentage of seed oil of safflower genotypes in the field.
Materials and methods: In the first stage, a factorial experiment was conducted based on a completely randomized design with three replications in laboratory condition. The experimental factors included thermo-priming (40, 60 and 80 ° C) at three times (6, 10 and 20 h) and safflower genotypes (primed and non- primed seeds). Germination percentage of seeds and seed germination rate were measured. Then, based on the results of the first stage, another factorial experiment was conducted based on a randomized complete block design with three replications. Safflower genotypes were primed only at 60 ° C at two times of 6 and 10 h (non- primed seeds were considered as control) and then days to 50% emergence, days to maturity, number of heads per plant, 1000-seed weight, seed yield per plant and seed oil percentage were measured during the experiment and at the end.
Results: The results of the first stage revealed that pre-sowing seed treatment by thermo-priming had a significant effect on the percentage and rate of germination. The highest percentage and rate of germination were obtained at temperatures of 40 and 60 ° C in the short period of priming (6 and 10 h). In field, according to the results of the first stage, pre-treatment of seeds at 60 ° C resulted in a reduction of the day to 50% seed emergence in primed genotypes compared to the control genotypes. On the other hand, thermo-priming resulted in increasing the day to maturity, seed yield per plant and percentage of seed oil, but the number of heads per plant was not affected by thermo-priming.
Conclusion: In general, the results indicated that pre-treatment of seeds with thermo-priming (medium temperatures) resulted in the rapid emergence and establishment of safflower seedlings. Moreover, the results showed that thermo-priming at 60 ° C not only had no negative effect on safflower seed yield and percentage of oil, but also significantly increased the traits in primed genotypes compared to non-primed ones. It is worth noting that the spring planting of primed seeds of safflower can lead to improved seed yield and oil yield compared to planting of non-primed seeds.

کلیدواژه‌ها [English]

  • Temperature
  • Germination rate
  • Percentage of germination
  • Phenological traits
  • Yield
1. Afzal, I., Aslam, N., Mahmood, F., Irfan,
S. and Ahmad, G. 2004. Enhancement of
germination and emergence of canola
seeds by different priming techniques.
Caderno de Pesquisa Sér. Bio. Santa Cruz
do Sul. 16: 19-346.
2.Alizadeh, M. and Yadavi, A. 2016. Effect
of priming and irrigation water quality on
seed and oil yield and yield components
of two sesames (Sesamum indicum L.).
J. Plant. Prod. 39: 115-125. (In Persian)
3.AOCS. 1993. Official methods and
recommended practices. The American
Oil Chemists Society, Champaign.
4.Asgarpanah, J. and Kazemivash, N. 2013.
Phytochemistry, pharmacology and
medicinal properties of Carthamus
tinctorius L. Chin. J. Integr. Med.
19: 153-159.
5.Azarnia, M. and Eisvand, H.R. 2013.
Effects of hydro and hormonal priming
on yield and yield components of
chickpea in irrigated and rain-fed
conditions. Elec. J. Crop. Prod. 6: 14-18.
(In Persian)
6.Baljain, R. and Shekari, F. 2012. Effects
of priming by salicylic acid on yield and
growth indices of safflower (Carthamus
tinctorus L.) plants under end season
drought stress. J. Agric. Sci. 22: 87-103.
(In Persian)
7.Barati, M. 2010. Assessment of genetic
diversity among and within populations in
safflower cultivar and lines using
EST-SSR molecular markers. M.Sc.
thesis. Isfahan University of Technology.
240p. (In Persian)
8.Basra, S.M.A., Ehsanullah, E., Warraich,
A., Cheema, M.A. and Afzal, I. 2003.
Effect of storage on growth and yield of
primed canola seed. Int. J. Agric. Bio.
5: 117-120.
9.Buriro, M., Oad, F.C., Keerio, M.I.,
Tunio, S., Gandahi, S.W.U., Hassan,
A.W. and Oad, S.M. 2010. Wheat seed
germination under the influence of
temperature regimes. Sarhad. J. Agric.
27: 539-543.
10.Carlos, A., Juan, B.C., Piatti, F. and
Piatti, A. 2007. Improving the
germination of celery seed at high
temperature. Agric. Soc. Sci. 3: 67-69.
11.Chawan, D.D. 1971. Role of high
temperature pretreatments on seed
germination. J. Oecol. 6: 343-349.
12.Demir, I. and Oztokat, C. 2003. Effect of
salt priming on germination and
seedling growth at low temperatures in
watermelon seeds during development.
Seed. Sci. Technol. 31: 765-770.
فریدون برازنده و همکاران
121
13.Ellis, R.A. and Roberts, E.H. 1981. The
quantification of ageing and survival in
orthodox seeds. Seed. Sci. Technol.
9: 373-409.
14.Elouaer, M.A., Kaouther, Z., Ben, F.M.
and Cherif, H. 2012. Seed priming for
better growth and yield of safflower
(Carthamus tinctorius) under saline
condition. J. Stress Physiol. Biochem.
8: 135-143.
15.FAO. 2014. Food and Agriculture
Organization of the United Nations.
www. Fao.org/faostat/#data/QC.
16.Farahani, H.A., Moaveni, P. and
Maroufi, K. 2011. Effect of thermopriming on germination of cowpea
(Vigna sinensis L.). Adv. Environ. Biol.
5: 1668-1673.
17.Foti, S., Cosentino, S.L., Patane, C. and
D'Agosta, G.M. 2002. Effect of osmoconditioning upon seed germination of
Sorghom (Sorghom Bicolor (L.)
Moench) under low temperatures. Seed.
Sci. Technol. 30: 521-533.
18.Ghassemi-Golezani, K., Dastborhan, S.
and Zehtab-Salmasi, S. 2013. Seed
priming and field performance of borage
(Borago officinalis L.) under different
irrigation treatments. Int. J. Agron.
Plant. Prod. 4: 82-87.
19.Gupta, T. and Hunsigi, S.L. 2010.
Improving the performance of
peppermint (Mentha piperita) by
physical seed priming under semi-arid
conditions. Ind. J. Med. Plants. Res.
(S): 15-21.
20.Haque, M.Z., Hasan, M.M., Rajib,
M.M.R. and Hasan, M.M. 2009.
Identification of cultivable heat tolerant
wheat genotypes. J. Bangladesh Agric.
7: 241-246.
21.Hardegree, S.P., Jones, T.A. and Vactor,
S.S.V. 2002. Variability in Thermal
response of Primed and Non-primed
Seeds of Squirreltail (Elymus elymoides
(Raf.) Swezey and Elymus multisetus
(J.G. Smith) M.E. Jones). Ann. Bot.
89: 311-319.
22.Harris D., Pathan A.K., Gothkar, P.,
Joshi, A., Chivasa, W. and Nyamudeza,
P. 2001. On- farm seed priming: Using
participatory methods to revive and
refine a key technology. Agric. Sys.
69: 151-164.
23.Hiramatsu, M., Takahashi, T., Komatsu,
M., Kido, T. and Kasahara, Y. 2009.
Antioxidant and neuroprotective
activities of Mogami-benibana
(safflower, Carthamus tinctorius Linne).
Neurochem. Res. 4: 795-805.
24.Hsu, C.C., Chen, C.L., Chen, J.J. and
Sung, J.M. 2003. Accelerated agingenhanced lipid peroxidation in bitter
gourd seeds and effects of priming
and hot water soaking treatments. Sci.
Hortic. 98: 201-212.
25.Jahanban, L., Lotfifar, O. and Mottaghi,
S. 2015. Study the efficiency of three
seed priming methods for salt and
drought stresses tolerance of safflower
(Cartthamus tinctorius L.) in
germination and seedling stages. Iran. J.
Seed. Sci. Res. 3: 27-39. (In Persian)
26.Karami, S., Sabzalian, M.R.,
Rahimmalek, M., Saeidi, G.H. and
Khodaee, L. 2017. Influence of seasonal
variations on seed oil and total phenolic
content of seeds and leaves in cultivated,
wild species and F5 generation of interspecific cross in Carthamus spp. Iran.
J. Med. Aromat. Plant. 2: 281-292.
(In Persian)
27.Khomari, S., Soltani-Nezhad, M. and
Sefghi, M. 2014. Effect of seed vigor
and pretreatment on germinability and
seedling growth of safflower under
drought and salinity conditions. Int. J.
Farm. Alli. Sci. 3: 1229-1233.
28.Lin, J.M. and Sung, J.M. 2001. Presowing treatments for improving
emergence of bitter gourd seedlings under
optimal and sub-optimal temperatures.
Seed. Sci. Technol. 29: 39-50.
29.Liu, Y., Kermode, A. and El-Kassaby,
Y.A. 2013. The role of moist-chilling
and thermo-priming on the germination
characteristics of white spruce (Picea
glauca) seed. Seed. Sci. Technol.
41: 321-335.
30.Markovskaya, E.F., Sherudilo, E.G. and
Sysoeva, M.I. 2007. Cucumber seed
germination: effect and after-effect of
temperature treatments. Seed. Sci.
Biotechnol. 1: 25-31.
31.Mauromicale, G. and Cavallaro, H. 1997.
A comparative study of the effects of
different compounds on priming of
tomato seed germination under
suboptimal temperatures. Seed. Sci.
Technol. 25: 399-408.
32.McDonald, M.D. 1999. Seed deterioration:
physiology, repair and assessment. Seed.
Sci. Technol. 27: 177-183.
33.Meyer, S.E., Debaene-Gill, S.B. and
Allen, P.S. 2000. Using hydrothermal
time concepts to model seed
germination response to temperature,
dormancy loss, and priming effects in
Elymus elymoides. Seed. Sci. Res.
10: 213-223.
34.Moe, R. and Heins, R.D. 2000. Thermoand photomorphogenesis in plants,
P 52-64, In: E. Strømme (ed.), Advances
in floricultural research, Agricultural
University of Norway, Norway.
35.Monte, J.P. and Tarquis, A.M. 1997.
The role of temperature in the seed
germination. J. Exp. Bot. 48: 2087-2093.
36.Mørk, E., Sriskandarajah, S. and Serek,
M. 2005. Influence of seed germination
conditions on regenerative ability in
Campanula carpatica. Eur. J. Hort. Sci.
70: 173-176.
37.Nleya, T., Balkl, R.A. and Vandenberg, A.
2005. Germination of common bean under
constant and alternating cool temperatures.
Can. J. Plant Sci. 85: 577-585.
38.O’Reilly, C. and Doody, P. 2005. Effect
of moist-chilling and priming treatments
on the germination of Douglas-fir and
noble fir seeds. Seed. Sci. Technol.
33: 63-76.
39.Omidi, H., Soroushzadeh, A., Salehi, A.
and Ghezeli, F.D. 2005. Rapeseed
germination as affected by osmopriming pretreatment. Iran J. Sci.
Technol. 19: 125-136 (In Persian)
40.Ozturk, E., Ozer, H. and Polat, T. 2008.
Growth and yield of safflower
genotypes grown under irrigated and
non-irrigated conditions in highland
environments. Plant. Soil. Environ.
54: 453-460.
41.Pill, W.G. and Necker, A.D. 2001. The
effects of seed treatments on
germination and establishment of
Kentucky bluegrass. Seed. Sci. Technol.
29: 65-72.
42.Sherudilo, E.G., Markovskaya, E.F. and
Sysoeva, M.I. 2006. Temperature drop
on moist cucumber seeds affects plant
cold resistance. P 414-415, Abstracts of
the XXVIIth International Horticultural
Congress, Seoul, Korea.
43.Singh, V. and Nimbkar, N. 2006.
Safflower (Carthamus tinctorius L.).
P 167-194, In: R.J. Singh (ed), Genetic
resource, chromosome engineering and
crop improvement: oilseed crop, CRC
Press, Boca Raton, FL, USA.
44.Subedi, K.D. and Ma, B.L. 2005. Seed
priming does not improve corn yield in a
humid temperate environment. Agron. J.
97: 211-218.
45.Tester, M. and Davenport, R. 2003.
Na+ tolerance and Na+ transport in
higher plants. Ann. Bot. 9: 503-527.
46.Wang, H.Y., Chen, C.L. and Sung, J.M.
2003. Both warm water soaking and
solid priming treatments enhance antioxidation of bitter gourd seeds
germinated at sub-optimal temperature.
Seed. Sci. Technol. 31: 47-56.
47.Wiedemuth, K., Muller, J., Kahlau, A.,
Amme, S., Mock, H.P., Grzam, A., Hell,
R., Egle, K., Beschow, H. and
Humbeck, K. 2005. Successive
maturation and senescence of individual
leaves during barley whole plant
ontogeny reveals temporal and spatial
regulation of photosynthetic function in
conjunction with C and N metabolism.
Plant. Physiol. 162: 1226-1236.
48.Zhou, L., Yan, T., Chen, X., Li, Z, Wu,
D., Hua, S. and Jiang, L. 2018. Effect of
high night temperature on storage lipids
and transcriptome changes in developing
seeds of oilseed rape. J. Exp. Bot.
69: 1721-1733.