ارزیابی کارآیی مدل های شبکه عصبی مصنوعی در برآورد عملکرد اسانس گیاه مرزه تابستانه بر اساس ویژگی های زودیافت خاک

نوع مقاله: پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه علوم باغبانی دانشگاه علوم کشاورزی ومنابع طبیعی گرگان

2 هیات علمی، دانشیار گروه علوم باغبانی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 رئیس دانشکده تولید گیاهی-دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 دانشیار گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی گرگان

5 مدرس دپارتمان مهندسی تولیدات گیاهی، دانشکده کشاورزی، دانشگاه فنی و حرفه‌ای خراسان رضوی

چکیده

سابقه و هدف: یکی از نیازهای مهم در برنامه‌ریزی تولید و فرآوری گیاهان دارویی به منظور حصول عملکرد بالا و با کیفیت مطلوب، ارزیابی اولیه خصوصیات فیزیکی و شیمیایی خاک منطقه است که می‌توان با اجتناب از کاربرد غیرضروری آزمایشات متنوع خاکشناسی، هزینه تولید را به حداقل کاهش داد. مرزه تابستانه (Satureja hortensis L) از جمله گیاهان دارویی پرکاربرد است که میزان اسانس و ترکیبات آن شاخص کیفی گیاه محسوب می‌شود. امروزه با ورود مدل‌های رگرسیونی چند متغیره و مدل‌های شبکه مصنوعی در تحقیقات، بسیاری از روابط پیچیده موجود در طبیعت قابل درک است. از این رو ضرورت برآورد عملکرد اسانس گیاه مرزه با استفاده از روش‌های سریع، کم هزینه و با دقتی قابل قبول احساس می‌گردد.
مواد و روش‌ها: این پژوهش بصورت طرح کاملاً تصادفی، در سه تکرار و بصورت گلدانی انجام شد. از مناطق مختلف شهرستان نیشابور 53 نمونه خاک تهیه و پارامترهای زودیافت آن که شامل 1-درصد شن، 2-درصد سیلت، 3-درصد رس، 4-مواد آلی، 5-اسیدیته، 6-شوری، 7-فسفر، 8-پتاسیم، 9-نیتروژن، 10-درصد کربن می‌باشد، در آزمایشگاه اندازه‌گیری و نتایج اولیه بدست آمد. تقریباً 90 روز پس از کشت بذور در گلدان‌های حاوی نمونه‌های مختلف خاکی، نمونه‌گیری از آن‌ها صورت گرفت. سپس نمونه‌ها به مدت 24 ساعت در آون 40 درجه سانتی‌گراد قرار گرفتند تا خشک شوند. در نهایت رابطه‌های بین عملکرد اسانس گیاه مرزه و پارامترهای زودیافت خاک با تجزیه شبکه عصبی مصنوعی و با استفاده از نرم افزار Matlab7.9 مشخص گردید. برای بدست آوردن حساس‌ترین پارامترها، تجزیه حساسیت به روش ضریب بدون بعد حساسیت محاسبه گردید. بطوری که اگر مقدار ضریب حساسیت پارامتری از 1/0 بیش‌تر باشد، آن پارامتر جز پارامترهای حساس مدل محسوب ‌شد.
یافته‌ها: شبکه عصبی مصنوعی از الگوی شبکه عصبی مصنوعی انسان شبیه‌سازی شده است، به گونه‌ای که می‌تواند پس از آموزش، پارامترهای خروجی مورد نظر را با اعمال پارامترهای ورودی برآورد نماید. در این پژوهش، از ساختار شبکه عصبی پرسپترون با الگوریتم آموزشی مارکوآت لونبرگ استفاده شد تا عملکرد اسانس از پارامترهای زودیافت خاک همچون بافت خاک، مواد آلی و عناصر پرمصرف برآورد شود. بالا بودن مقادیر R2 و پایین بودن مقادیر RMSE یاد شده بیانگر نزدیک بودن داده‌های پیش‌بینی با داده‌های اندازه‌گیری و دقت بالای مدل در برآورد عملکرد اسانس گیاه مرزه تابستانه است. بر این اساس پارامترهای بافت خاک(درصد شن، سیلت و رس) و کربن آلی، ماده آلی، شوری، پتاسیم و اسیدیته خاک به ترتیب به عنوان حساس‌ترین پارامترها انتخاب گردید.
نتیجه‌گیری: نتایج نشان داد که مدل‌های عصبی ایجاد شده قادر نبودند عملکرد اسانس در گیاه مرزه تابستانه را با حداکثر دقت (R2= 0.50) برآورد نمایند. از بین 8 مدل برازش یافته یک مدل مبتنی بر متغیرهای مستقل EC + بافت + کربن + ماده آلی + پتاسیم + pH عملکرد بهتری داشت، با این وجود تعداد بالای عوامل ورودی این مدل محدودیت تلقی می‌شود. از آنجایی که این تحقیق جزء اولین بررسی‌ها در مورد برآورد عملکرد اسانس گیاهان دارویی بود، لذا ادامه تحقیق و بررسی در این خصوص و همچنین پیش‌بینی عملکرد سایر گیاهان دارویی به این روش پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance evaluation of Artificial Neural Networks to estimate, summer savory (Satureja hortensis L.) essential oil yield based on the easily available soil properties

نویسندگان [English]

  • hossein sabourifard 1
  • Azim Ghasemnezhad 2
  • Khodayar Hemmati 3
  • Aboutaleb hezarjaribi 4
  • Mahmoudreza bahrami 5
1 Master Graduated, Dept. of Horticultural Science, Gorgan University of Agricultural Sciences and Natural Resources
2 Associate Prof., Dept. of Horticultural Science, Gorgan University of Agricultural Sciences and Natural Resources.
3 Head of Faculty-Gorgan Agricultural University And Natural Resources
4 Associate Prof., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources
5 Lecturer, Department of Plant Production Engineering, Faculty of Agriculture, Technical and Vocational University (TVU), Khorasan Razavi
چکیده [English]

Background and aim: One of the most important requirements in planning production and processing of medicinal plants in order to obtain high yield and high-quality is the initial assessment of the soil physical and chemical properties, which can reduce the production cost by avoiding the use of unnecessary soil analysis. Summer Savory(Satureja hortensis L.)is one the most widely used medicinal plants that quality index of plant is related to the quantity and the constituent of its essential oil content.Understanding the relations between the quantity and quality of medicinal plants with the several physical and chemical properties of soil is very complex and the estimation of parameters changes of medicinal plants affect by soil quality characteristics is more difficult. Today, with the introduction of multivariable regression models and artificial network models in the research, many complex relationships found in nature is understandable.Hence the need for estimation of the essential oil yield of savory using fast, cheap and acceptable accuracy methods is necessary.Material and method: The present study was performed as pot experiment based on completely randomized design with 3 replications. Fifty three soil samples were collected from different parts of Nishabur, and easily available soil properties including sand, silt and clay percentage, organic matter, pH, salinity, phosphorus, potassium, nitrogen and carbon contents of the soil samples were measured at laboratory and the primary results were obtained. Approximately 90 days after seed planting in mentioned soil samples, the sampling of plants was done based on the treatments. Samples were placed for 24 hours in an oven at 40 °C, for drying. Finally, the relationship between the essential oil yield and easily available soil parameters was determined using artificial neural network by Matlab7.9 software. To obtain the most sensitive parameters, sensitivity analysis was calculated by using sensitivity coefficient without dimension method. So that, if the parameter value is more than 0.1, then that parameter is considered as the sensitive parameter of the model.
Results: An artificial neural network is simulated from a human neural network model, which, after training, estimates the output parameters by applying the input parameters. In this research, the perceptron neural network structure was used with Marcoat Levenberg training algorithm to estimate the essential oil yield from easily available soil parameters such as soil texture, organic matter, and macro elements. The high R2 values and the low RMSE values indicate that predictive data are close to the measurement data and high accuracy of the model in the estimation of summer savory essential oil yield. Based on this, soil texture parameters (sand, silt and clay percentages) and organic carbon, organic matter, salinity, potassium and soil acidity were selected as the most sensitive parameters, respectively. High values of R2 and low levels of RMSE mentioned the proximity of the forecast data with measurement data and high accuracy of the model in summer Savory essential oil yield estimation. Accordingly, the parameters of organic carbon, nitrogen, phosphorus, organic matter, potassium, pH, salinity, clay, silt and sand respectively were selected as the most sensitive parameters. Conclusion: The results showed that the created neural models were not able to estimate the essential oil yield of summer savory with a maximum accuracy (R2=0.50).Among the 8 fitted models, a model based on independent variables EC+texture+carbon+organic matter + potassium + pH was better than the other, but the high number of input factors of this model is considered to be a limitation. Since the present study is an initial assessment of the essential oil yield of medicinal plants, it is recommended to continue the research in this regard as well as to predict the performance of other medicinal herbs.

کلیدواژه‌ها [English]

  • Biomass
  • soil texture
  • Medicinal plants
  • Function
1.Akbarpour, A., Khorashadizadeh, O.,
Shahidi, A. and Ghochanian, E. 2013.
Performance evaluation of artificial neural
network models in estimate production of
yield saffron based on climate parameters.
J. Saff. Res. 1: 1. 27-35.
2.Bremner, J.S. and Mulvaney, C.S. 1982.
Nitrogen-total. In: A.L. Page (Ed.),
Methods of Soil Analysis, Part 2.
American Society of Agronomy. Madison,
Wisconsin, Pp: 595-624.
3.Hill, M. 1998. Methods and guidelines
for effective model calibration. U.S.
Geological survey Water- Resources
Investigations Rep. 98-4005.
4.Menhaj, M.B. 2001. Computational
intelligence, fundamentals of neural
networks. 2nd d., Amir Kabir University
of Technology, Tehran: Iran. (In Persian)
5.Moazenzadeh, R., Ghahraman, B.,
Fathalian, F. and Khoshnoodyazdi, A.A.
2009. Effect of type and number of input
variables on moisture retention curve and
saturated hydraulic conductivity prediction.
J. Water. Soil. 23: 3. 57-70. (In Persian)
6.Movahedi Naiini, A. 2008. Soil physics
(foundations and applications). Gorgan
University of Agricultural Sciences and
Natural Resources. Press, 304p. (In Persian)
7.Nakhaei, M. 2005. Estimating the
saturated hydraulic conductivity of
granular material, using Artificial Neural
Network, based on grain size distribution
curv. Sci. I. R. Iran. J. 16: 1. 55-62.
8.Omidbaigi, R. 2005. Production and
processing of medicinal plants. Astane
Quds Publ. Tehran, 438p.(In Persian)
9.Page, A., Miller, R. and Keeney, D. 1982.
Methods of Soil Analysis. 2th ed. Part 2:
Chemical and biological properties. Soil.
Sci. Soc. Am. Inc. Publisher.
10.Rao, V. and Rao, H. 1996. C++ Neural
networks and fuzzy logic. BPB, New
Dehli, India, Pp: 380-381.
11.Schaap, M. and Leij, F. 1998. Using
neural networks to predict soil water
retention and soil hydraulic conductivity.
Soil.Till. Res. 47: 37-42.
12.Schaap, M., Leij, F. and Van Genuchten,
M. 1998. Neural network analysis
for hierarchical prediction of soil
hydraulic properties. Soil Sci. Soc. Am.
J. 62: 847-855.