اثر پیش‌تیمار بذر و محلول‌پاشی اسید سالیسیلیک بر برخی خصوصیات فیزیولوژیکی و عملکرد دانه ماش (Vigna radiata L.) در شرایط تنش خشکی

نوع مقاله: پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ایلام

2 استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ایلام

3 عضو هئیت علمی

چکیده

سابقه و هدف: ماش گیاهی از خانواده حبوبات و تابستانه بوده که در تناوب با غلاتی مانند گندم کشت می‌گردد. دوره رشد این گیاه 75-90 روز بوده و با نیاز آبی کم، قابلیت بالایی برای رشد در شرایط خشک و نیمه خشک دارد. تنش‌های غیر زیستی همانند تنش خشکی، از عوامل کاهنده رشد و عملکرد محصولات زراعی شناخته می‌شوند که با توجه به تغییرات اقلیمی تولید پایدار را به مخاطره می‌اندازد. تنش خشکی با از بین بردن رنگیزه‌های فتوسنتزی و اختلال در تبادل گازی، فتوسنتز گیاه را مختل کرده و رشد و تولید در گیاهان را به شدت پایین می‌آورد. اسید سالیسیلیک یک هورمون طبیعی در گیاهان می‌باشد و اثرات مختلفی بر فعالیت بیوشیمیایی و فیزیولوژیکی گیاهان داشته و بعنوان یک پیام‌رسان در افزایش مقاومت گیاهان در برابر تنش‌های غیرزیستی بویژه تنش خشکی عمل می‌نماید. کاربرد اسید سالیسیلیک در شرایط تنش خشکی می‌تواند منجر به افزایش فتوسنتز و رشد گیاهان گردد. هدف از انجام این پژوهش بررسی اثر کاربرد سالیسیلیک اسید (به دو روش پیش تیمار و محلول پاشی) بر رشد و عملکرد دو رقم ماش در شرایط تنش خشکی می‌باشد.
مواد و روش‌ها: به منظور بررسی اثر اسید سالیسیلیک بر عملکرد و خصوصیات فیزیولوژیک دو رقم ماش در شرایط تنش خشکی، در سال 1396 آزمایشی به صورت کرت‌های دو بار خرد شده در قالب طرح بلوک کامل تصادفی در سه تکرار در مزرعه آزمایشی جهاد کشاورزی کارزان استان ایلام انجام شد. تیمارهای آزمایشی شامل دو سطح آبیاری (آبیاری بعد از 60 و 110 میلی‌متر تبخیر از تشتک تبخیر) به‌عنوان کرت اصلی، دو رقم گوهر و مهر بعنوان کرت فرعی اول و سه سطح کاربرد اسید سالیسیلیک (شاهد، پیش تیمار بذر و محلول پاشی) بعنوان کرت فرعی دوم بود.
یافته‌ها: نتایج تجزیه واریانس داده ها نشان داد که بر همکنش رقم، تنش خشکی و کاربرد اسید سالیسیلیک بر خصوصیات عملکرد دانه، عملکرد زیستی، تعداد غلاف در بوته و تعداد دانه در بوته معنی‌دار بود. بالاترین میزان عملکرد دانه ( 1894 کیلوگرم در هکتار) و بالاترین عملکرد وزن خشک توده ( 4997 کیلوگرم در هکتار) در رقم گوهر در شرایط بدون تنش و محلول‌پاشی اسید سالیسیلیک بدست آمد. همچنین کاربرد اسید سالیسیلیک در شرایط تنش خشکی باعث افزایش محتوای کلروفیلa، کلروفیلb و کارتنوئید شد. بیشترین (96%) و کمترین (71%) میزان رطوبت نسبی به ترتیب در تیمار بدون تنش با محلول‌پاشی اسید سالیسیلیک و تیمار تنش خشکی بدون اسید سالیسیلیک مشاهده شد.
نتیجه‌گیری: کاربرد اسید سالیسیلیک باعث افزایش محتوای رنگیزه‌های فتوسنتزی، کارتنوئید و رطوبت نسبی گیاه شد و در نهایت افزایش عملکرد در گیاه ماش را بدنبال داشت. عملکرد رقم گوهر در شرایط تنش خشکی و عدم تنش خشکی با کاربرد اسید سالیسیلیک بهبود یافت، ولی اختلاف بین تیمار شاهد و کاربرد اسید سالیسیلیک تحت شرایط تنش، بیشتر بود. در رقم مهر نیز کاربرد اسید سالیسیلیک در شرایط تنش خشکی باعث بهبود 70 درصدی عملکرد نسبت به تیمار عدم کاربرد سالیسیلیک گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of seed priming and foliar application of salicylic acid on some of physiological characteristic and yield on mung bean (Vigna radiata L.) under drought stress condition

نویسندگان [English]

  • Hujjatullah heidari 1
  • Yaser Alizadeh 2
  • arash fazeli 3
1 MSc student of agronomy and plant breeding repartment, faculty of Agriculture, University of Ilam
2 Assistant Prof. in Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
چکیده [English]

Background and objectives: Mung bean is a warm seasonal annual legume, grown mostly as a rotational crop with cereals like wheat. The crop’s main advantages are that, as a legume and that it has a short growth cycle (75-90 days), requires little water and fits easily into crop rotations with cereals. It grows well under most adverse arid and semiarid conditions. Plants in nature are continuously exposed to several biotic and abiotic stresses. Among these stresses, drought stress is one of the most adverse factors of plant growth and productivity and considered a severe threat for sustainable crop production in the conditions on changing climate. Drought stress disrupts photosynthetic pigments and reduces the gas exchange leading to a reduction in plant growth and productivity. Salicylic acid (SA) is a naturally occurring plant hormone, influences various physiological and biochemical functions in plants. It can act as an important signaling molecule and has diverse effects on tolerance to biotic and abiotic stresses. Salicylic acid plays a key role in providing tolerance to the plants, exposed to water stress. The exogenous SA application also enhanced the growth and photosynthetic rate in crops under water stress. The aim of this study was to investigate the effect of salicylic acid (include two method of seed priming and foliar application) on two cultivars of mung bean, under drought stress.
Material and method: In order to study the effect of exogenous application of salicylic acid on yield an physiological characteristic of two mung bean cultivars under drought stress an experiment was conducted as a split- split plots based on randomized complete block design with three replications in agricultural research farm of karezan of Ilam province in 2017. Treatments were 2 levels of irrigations (irrigation after 60 and 110mm evaporation from the evaporation pan) as main plots and 2 mung bean cultivars (Gohar and Mehr) as first sub plots and 3 levels of salicylic application (control, seed priming and foliar application) as second sub plots. Salicylic acid was sprayed in two steps: 1- Two weeks after emergence and five days before applying the stress, 2- Early flowering stage. Physiological characteristic were measured at flowering stage. Yield and yield components measured for each treatment separately in the physiological maturity time.
Results: Analyze of variance showed that the effect of interaction of cultivar, drought stress and salicylic application on the grain yield, biological yield, number of pod in plant and number of seed in plant were significant. The highest value of grain yield (1894 kg.ha-1) and biological yield (4997 kg.ha-1) were obtained in Gohar cultivar under without stress and foliar application of salisylic acid. Also, the application of salicylic acid, especially in drought stress conditions, increased the content of chlorophyll a, chlorophyll b and carotenoid. The highest (96%) and lowest (71%) relative water content were observed in non-stress treatment with salicylic acid application and stress treatment without salicylic acid, respectively.
Conclusion: Exogenous application of salicylic acid improved the drought tolerance of mung bean by enhancing photosynthetic pigments, carotenoid and relative water content which ultimately increased the yield of mung bean. Under drought stress and non-stress conditions, the yield of Gouhar cultivar was higher than that of Mehr cultivar. But the difference between control treatment and application of salicylic acid treatment was higher, under drought stress condition. Application of salicylic acid was raised 70 percent of Mehr cultivar yield under drought stress condition

کلیدواژه‌ها [English]

  • Water stress
  • Salicylic acid
  • mung plant
1.Agarwal, S., Sairam, R.K., Srivastava,
G.C. and Meena, R.C. 2005. Changes in
antioxidant enzymes activity and
oxidative stress by abscisic acid and
salicylic acid in wheat genotypes. Biol.
Plant. 49: 541-550.
2.Dat, J.F., Foyer, C.H. and Scott, I.M.
1998. Changes in salicylic acid and
antioxidants during induced thermo
tolerance in mustard seedlings. Plant
Physiol. 118: 1455-1461.
3.Edge, R., McGarvey, D.J. and Truscott,
T.G. 1997. The carotenoids as
antioxidants-a review. J. Photochem.
Photobiol. B. 41: 189-200.
4.Egert, M. and Tevini, M. 2002. Influence of
drought on some physiological parameters
symptomatic for oxidative stress in leaves
of chives (Allium schoenoprasum). Enviro.
Ex. Bot. 48: 43-49.
5.Farbod, N., Bakhshandeh, A. and
Aineband, A. 2008. Effect of row spacing
and irrigation remowal on yield and yield
component of mung bean. 10th congress
of agronomy science and breeding. Seed
plant Improvement Research Institute,
Karaj, Iran. Pp: 472-473. (In Persian)
6.Fariduddin, Q., Hayat, S. and Ahmad,
A. 2003. Salicylic acid influences the
net photosynthetic rate, carboxylation
efficiency, nitrate reductase activity and
seed yield in Brassica juncea.
Photosynth. 41: 281-284.
7.Ghai, N., Setia, R.C. and Setia, N. 2002.
Effect of paclobutrazol and salicylic acid
on chlorophyll content, hill activity and
yield components in Brescia napus L.
(cv. GSL-1) Phytomorphol. 52: 83-87.
8.Gonzalez, L. and Gonzalez-Vilar, M.
2001. Determination of relative water
content. In: Roger, M.J.R. (ed) Handbook
of plant ecophysiology techniques.
Springer, Netherlands. Pp: 207-212.
9.Gutierrez-Coronad, M., Trejo, C.L. and
Larque-Saaverda, A. 1998. Effect of
salicylic acid on the growth of root and
shoots in soybean. Plant. Physiol.
Biochem. 36: 563-565.
10.Idrees, M., Khan, M.M., Naeem, M.,
Aftab, T., Hashmi, N. and Alam, N.
2011. Modulation of defense responses
by improving photosynthetic activity,
antioxidative metabolism and vincristine
and vinblastine accumulation in
Catharanthus roseus (L.) G. Don
through salicylic acid under water stress.
Russ. Agr. Sci. 37: 474-482.
11.Jiang, Y. and N. Huang. 2001. Drough
and heat stress injury to two cool-season
turf grasses in relation to antioxidant
metabolism and lipid peroxidase. Crop.
Sci. 41:436-442.
12.Hashempour, A., Ghasemzhad, M.,
Fotouhi, G. and Sohani, M.M. 2014. The
physiological and biochemical response
to freezing stress olive plants treated
with salicylic acid. Russ. J. Plant.
Physiol. 61: 4. 443-450.
13.Kadioglu, A., Saruhan, N., Saglam, A.,
Terzi, R. and Acet, T. 2011. Exogenous
salicylic acid alleviates effects of long
term drought stress and delays leaf
rolling by inducing drought stress and
delays leaf rolling by inducing
antioxidant system. Plant. Growth.
Regul. 64: 27-37.
14.Khan, W., Prithiviraj, B. and Smith, D.
2003. Photosynthetic responses of corn and
soybean to foliar application of salicylates.
J. Plant. Physiol. 160: 485-492.
15.Khan, M.I., Fatma, M., Per, T.S.,
Anjum, N.A. and Khan, N.A. 2015.
Salicylic acid-induced abiotic stress
tolerance and underlying mechanisms in
plants. Plant. Sci. J. 6: 462.
16.Kaur, S., Gupta, A.K. and Kaur, N.
2005. Seed priming increases crop yield
possibly by modulating enzymes of
sucrose metabolism in chickpea. J.
Agron. Crop. Sci. 191: 81-87.
17.Keikha, M., Nori, M. and Koshtehgar,
A. 2017. Study of salicylic acid
and gibberellic on yield and yield
components of mung bean. Iran.
J. Pul. Res. 7: 2. 138-151. (In Persian
with English Abstract)
18.Khodary, S.E. 2004. Effect of salicylic
acid on the growth, photosynthesis and
carbohydrate metabolism in salt-stressed
maize plants. Int. J. Agric. Biol. 6: 5-8.
19.Lawlor, D.W. and Cornic, G. 2002.
Photosynthetic carbon assimilation and
associated metabolism in relation to
water deficits in higher plants affected by
N fertilization. Agron. J. 73: 583-587.
20.Levitt, J. 1980. Response of plants to
environmental stress: Water, radiation,
salt and other stresses. Academic Press,
New York, U.S.A. 650p.
21.Li, N., Parsons, B.L., Liu, D.R. and
Mattoo, A.K. 1992. Accumulation of
wound-inducible ACC synthase transcript
in tomato fruit is inhibited by salicylic
acid and polyamines. Plant. Mol. Biol.
18: 477-487.
22.Lichtenthaler, H.K. and Wellburn, A.R.
1983. Determinations of total carotenoida
and cholorophylls a and b of leaf
extracts in different soivents. Biol.
Socie. Trans. 11: 591-603.
23.Majd, A., Madah, S.M., Fallahian, F.,
Sabaghpour, S.H. and Chalbyan, F.
2006. Effect of salicylic acid on
operation, operation components and
resistance of two susceptible and
resistant cultivars of chickpea. Biol. Sci.
Promo. 19: 324-314. (In Persian with
English Abstract)
24.Miura, K. and Tada, Y. 2014.
Regulation of water, salinity and cold
stress responses by salicylic acid. Plant.
Sci. 5: 410.
25.Mehrabian, N., Arvin, M., Khajavinejad,
R. and Maghsoodi, K. 2011. Effect of
salicylic acid on growth and forage and
grain yield under drought stress. Seed.
Plant. Improv. J. 27: 41-55. (In Persian
with English Abstract)
26.Naderi, S., Khajeh, H. and Ahmadi,
H. 2016. Effect of Salicylic Acid
on Some Physiological Properties of
Coriander Plant. Sci. J. Plant. Ecophysiol.
7: 4. 287-305. (In Persian with English
Abstract)
27.Nagizzadeh, M. and Gholami, M.
2014. Effect of pre-treatment of salicylic
acid on yield and yield components of
wheat under drought stress. J. Agro.
6: 1. 162-170. (In Persian)
28.Pinheiro, C.J., Passarinhoa, A. and
Ricardo, C.P. 2004. Effect of drought
and rewatering on the metabolism of
Lupinus albus organs. J. Plant. Physiol.
161: 1203-1210.
29.Rajabi, L., Sajedi, N.A. and Roshandel,
M. 2012. Response of yield and yield
components of dried peas to salicylic
acid and superabsorbent polymers. J.
Crop Prod. Res. 4: 343-354. (In Persian)
30.Rao, M.V., Paliyath, G., Ormrod, D.,
Murr, D. and Watkins, C. 1997.
Influence of salicylic acid on H2O2
production, oxidative stress and H2O2
metabolizing enzymes. Plant. Physiol.
115: 137-149.
31.Sairam, R.K. and Srivastava, G.C. 2001.
Water stress tolerance of wheat
(Triticum aestivum L.) variations in
hydrogen peroxide accumulation and
antioxidant activity in tolerant and
susceptible genotypes. J. Agron. Crop.
Sci. 186: 63-70.
32.Sanchez, S.R. 1998. Turgor maintenance,
osmotic adjustment and soluble sugar
and proline accumulation in 49 pea
cultivars in response to water stress.
Field. Crop. Res. 59: 225-235.
33.Senaranta, T., Teuchell, D., Bumm, E.
and Dixon, K. 2002. Acetyl salicylic acid
and salicylic acid induce multiple stress
tolerance in bean and tomato plants.
Plant. Growth. Regul. 30: 157-161.
34.Sepehri, A., Abbasi, R. and Karami, A.
2014. Effect of drought stress and
salicylic acid on yield and yield
component in bean genotype. Agri.
Crop. Manag. 17: 503-516. (In Persian
with English Abstract)
35.Shoghian, M. and Rozbehani, A. 2017.
Effect of foliar application of salicylic
acid on yield and yield components of
kidney bean under drought stress. Crop.
Physiol. J. 34: 131-147. (In Persian with
English Abstract)
36.Sgherri, C.L.M., Maffei, M. and NavariIzzo, F. 2000. Antioxidative enzymes in
wheat subjected to increasing water
deficit and rewatering. J. Plant Physiol.
157: 273-279.
37.Singh, B.R. and Singh, B.P. 1995.
Agronomic and physiological responses
of sorghum, maize and pearl millet to
irrigation. Field. Crop. Res. 42: 57-67.
38.Vafabakhash, J., Nasiri Mahallati, M.
and Kochaki, A. 2009. Effect of drought
stress on yield and radiation use
efficiency of canola cultivars. Iran.
J. Agric. Res. 6: 193-208. (In Persian)
39.Xu, L., Han, L. and Huang, B. 2011.
Antioxidant enzyme activities and gene
expression patterns in leaves of
kentucky bluegrass in response to
drought and post-drought recovery. J.
Am. Soc. Hort. Sci. 136: 4. 247-259.
40.Yavas, I. and Unay, A. 2016. Effects
of zinc and salicylic acid on wheat
under drought stress. J. Anim. Plant Sci.
26: 4. 1012-101.
41.Zabet, M., Hoseinzadeh, A., Ahmadi, A.
and Khialparast, F. 2003. Determination
of the most important traits affecting
yield under two irrigation conditions
using multivariate methods in mungbean
genotypes. J. Iran. Agri. Sci. 35: 839-849.
(In Persian)
42.Zhang, J. and Kirkham, M.B. 1996.
Enzymatic responses of the ascorbateglutathione cycle to drought in sorghum
and sunflower plants. Plant Sci.
113: 139-147.