نمایش افتراقی تحمل به تنش حرارتی ارقام زیتون زرد و دیره براساس شاخص‌های فیزیولوژیکی، بیوشیمیایی و الگوی بیان ژن‌های PPO و PAL

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 پژوهشکده میوه‌های معتدله، مؤسسه تحقیقات علوم باغبانی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

3 گروه علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 مرکز تحقیقات کشاورزی و منابع زنجان، زنجان، ایران

چکیده

سابقه و هدف: زیتون یکی از مهم‌ترین گونه‌های محصولات باغی ایران بوده که به‌طور وسیعی در مناطق نیمه‌گرمسیری کشور کشت می-شود. در بسیاری از این مناطق دمای هوا به ویژه در فصول تابستان تا حد ایجاد تنش حرارتی برای این گونه گیاهی بالا می‌رود. اطلاعات اندکی در خصوص تحمل ارقام و راهکارهای فیزیولوژیکی و بیوشیمیایی موثر در پاسخ به تنش حرارتی در زیتون وجود دارد. لذا شناخت این راهکارها و نیز کشت ارقامی با دامنه تحمل بالا به چنین شرایطی از اهداف اصلاحی زیتون می‌باشد.

مواد و روش: به منظور مطالعه تاثیر تنش حرارتی بر تغییرات صفات فیزیولوژیکی، بیوشیمیایی و الگوی بیان ژن‌های فنیل‌آلانین‌آمونیالیاز (PAL) و پلی‌فنول‌اکسیداز (PPO)، در سال 1396 آزمایشی به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی اجرا شد. نهال‌های یکساله حاصل از قلمه ریشه‌دار شده ارقام زیتون زرد و دیره، بعد از انتقال به اتاقک رشد مصنوعی و سازگار شدن در سه مرحله دمایی مختلف، با تیمارهای دمایی 32 (مرحله قبل از تنش، به‌مدت سه ماه)، 45 (مرحله تنش، به‌مدت یک ماه) و 36 (مرحله بعد از تنش، به‌مدت پنج روز) درجه سانتی‌گراد مورد ارزیابی قرار گرفتند. صفات اندازه‌گیری شده شامل میزان رشد طولی تجمعی و وزن خشک شاخساره، رطوبت نسبی برگ‌ها، میزان نشت یونی، محتوی مالون‌دی‌آلدئید، حداکثر عملکرد فتوسیستم II (Fv/Fm)، حداقل فلورسنس کلروفیل (Fo)، میزان فعالیت آنزیم‌های PAL و PPO و الگوی بیان ژن‌های مربوط به این دو آنزیم بودند. تجزیه و تحلیل داده‌ها با استفاده از نرم‌افزار SAS 9.1 انجام و مقایسه میانگین داده‌ها به روش LSD در سطح احتمال یک درصد انجام شد.

یافته‌ها: نتایج مربوط به شاخص‌های رشد تجمعی و وزن خشک شاخساره، برتری نسبی رقم زرد را در مواجهه با تنش حرارتی و در مقایسه با رقم دیره نشان داد. تنش درجه حرارت بالا میزان رطوبت نسبی برگ هر دو رقم را نسبت به دوره قبل از تنش به طور معنی‌داری کاهش داد، اما این کاهش در رقم دیره با اختلاف معنی‌داری نسبت به رقم زرد محسوس‌تر بود. میزان آسیب تنش حرارتی به ساختارهای غشای سلولی که از طریق اندازه‌گیری متغیرهای نشت یونی و شاخص پراکسیداسیون چربی‌های غشاء (مالون‌دی‌آلدئید) تعیین شده بود، نشان داد تحت تنش درجه حرارت بالا، رقم زرد هم آسیب کمتری دیده بود و هم بازیافت سریع‌تری را در دوره بعد از تنش داشت. تنش حرارتی شاخص Fv/Fm را به طور معنی‌داری در دیره نسبت به زرد کاهش داد، در حالی‌که شاخص Fo در رقم دیره بطور معنی‌داری بیشتر از رقم زرد بود. میزان فعالیت آنزیم‌های PPO و PAL تحت شرایط تنش حرارتی افزایش بیشتری در رقم زرد نسبت به دیره نشان داد. میزان فعالیت PPO هر دو رقم در دوره بعد از تنش نسبت به دوره تنش کاهش یافت. بررسی الگوی تظاهر ژن‌های PPO و PAL نیز افزایش بیان این ژن‌ها را در پاسخ به تنش حرراتی در هر دو رقم نشان داد. میزان بیان ژن مربوط به این آنزیم PPO و PAL در مرحله تنش در رقم زرد نسبت به دیره به ترتیب 3 و 5/1 برابر افزایش داشت.

نتیجه‌گیری: نتایج نشان داد که رقم زرد در مقایسه با رقم دیره تحمل نسبتا بالایی به تنش حرارتی دارد. هم‌چنین، این رقم به دنبال رفع تنش، توانایی بالایی را در بازیافت خصوصیات فیزیولوژیکی و بیوشیمیایی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Differential display of heat stress tolerance of olive cultivars ‘Zard’ and ‘Direh’ based on physiological and biochemical indexes as well as PPO and PAL genes expression pattern

نویسندگان [English]

  • Ahmad Ajani 1
  • Ali Soleimani 1
  • Ali Asghar Zeinanloo 2
  • Esmaeil Seifi 3
  • Mahdi Taheri 4
1 Dept. of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran,
3 Dept. of Horticultural Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,
4 Zanjan Agricultural and Resources Center, Zanjan, Iran
چکیده [English]

Background and objectives: Olive (Olea europaea L.) is one of the important horticultural crops in Iran which is planted in subtropical regions. In most parts of these regions temperature, particularly during the summer, rises to the level of heat-stress for this plant species. There is a scarcity of information about the heat tolerance of olive cultivars and also about effective physiological and biochemical mechanisms by which they response to this stress. Therefore, understanding of these mechanisms and also going toward the selection and cultivation of high tolerant varieties are within the olive breeding objects.

Materials and methods: To study the impact of heat stress on physiological and biochemical traits changes as well as the expression pattern of phenylalanine amonialyase (PAL) and polyphenol oxidase (PPO) genes, a factorial experiment based on a completely randomized design was carried out in 2017. One-year-old own-rooted olive plants cvs. Zard and Direh were transferred into the artificial growth chamber and exposed to the different thermal conditions following an adaptation period. Thermal treatments included 32 oC (referred to as the before-stress stage, for three months), 45 oC (referred to as the stress-stage, for one month), and 36 oC for five days which referred to as the after-stress stage. Different traits including cumulative shoot growth and dry weight, relative water content (RWC), electrolyte leakage (EL), malondialdehyde contents (MDA), the maximum quantum yield of PSII (Fv/Fm), the minimum chlorophyll fluorescence (Fo), PPO and PAL enzyme activities and their genes expression pattern were studied. Data were analyzed by SAS 9.1 software, and the mean comparisons were made by LSD (P ≤0.01).

Results: The findings related to growth indexes, i.e., the cumulative shoot growth and dry weight, demonstrated the relative superiority of ‘Zard’ compared with that of ‘Direh’ under heat stress. The RWC was decreased significantly in leaf samples of both cultivars in response to high temperature. However, this reduction was more pronounced in ‘Direh’. The extent of injury to cell structures, based on the measurement of EL and MDA indexes, indicated that ‘Zard’ got suffer less damage than ‘Direh’ under heat stress and also recovered itself quicker at the recovery stage. Under heat stress conditions, a more and significant decrease in terms of the Fv/Fm index was shown in ‘Direh’ compared with ‘Zard’. In contrast with the Fv/Fm , the Fo index was higher significantly in ‘Zard’. The PPO and PAL activity was increased, with pronounced effect in ‘Zard’, under heat stress condition. The activity of PPO in both cultivars was declined following the heat stress at the recovery stage. The analysis of the expression patterns of genes related to PPO and PAL revealed their up-regulation in both cultivars in response to heat stress. The relative increase of PPO and PAL genes expression in ‘Zard’ and ‘Direh’ under heat stress conditions was respectively 3 and 1.5 times more than the before-stress stage.

Conclusion: The results here showed that olive cv. Zard had relatively more tolerance to heat stress. Also, this cultivar had a high ability to recover its physiological and biochemical traits following the heat stress at the recovery stage.

کلیدواژه‌ها [English]

  • Abiotic stress
  • Chlorophyll fluorescence
  • Electrolyte leakage
  • High-temperature stress
  • Olea europaea L
1.Angelopoulos, A., Dichio, B. and Xiloyannis. 1996. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering.J. Exp. Bot. 47: 301. 1093-1100.
2.Bagal, R.U., Leeben-Mack, H.J., Lorenz, W.W. and Dean, F.D.J. 2012. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC genomic. 13: 2-9.
3.Baker, N.L. and Rosenqvist, E. 2004. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55: 403. 1607-1621.
4.Beaudoin-Eagan, L.D. and Throp, T.A. 1985. Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol. 78: 3. 438-441.
5.Bian, S. and Jiang, Y. 2009. Reactive oxygen species, anti oxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci. Hortic. 120: 2. 264-270.
6.Blum, A. and Ebercon, A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21: 43-7.
7.Bongi, G., Mencuccini, M. and Fontanazza, G. 1987. Photosynthesis of olive leaves: effects of light flux density, leaf age, temperature, and peltates and H2O vapor pressure deficit on gas exchange. J. Am. Soc. Hortic. Sci.112: 1. 143-148.
8.Boughaleb, F. and Mhamdi, M. 2011. 2011. Possible involvement of proline and the antioxidant defense system in the drought of three olive cultivars grown under increasing water deficit regimes. Agric. J. 6: 6. 378-391.
9.Cirilli, M., Caruso, G., Gennai, C., Urban, S, Frioni, E., Ruzzi, M., Servili, M., Gucci, R., Poerio, E. and Muleo, R. 2017. The role of polyphenoloxidase, peroxidase and β- Glucosidase in phenolics accumulation in Olea europaea L. fruits under different water regimes. Front. Plant Sci. 8: 717. 1-13.
10.Cui, L., Li, J., Fan, Y., Xu, S. and Zhang, Zh. 2006. High temperature effects on photosynthesis, PSII functionally and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot. Stud. 47: 61-69.
11.Ebtedaie, M. and Shekafandeh, A. 2016. Morpho-physiological changes of two cultivars of pomgrate ‘Rabab’ and ‘Shisheh Gap’ under water stress conditions. Iran. J. Hortic. Sci. Technol. 17: 2. 209-220.
12.Grisafi, F., Bonafede, E., Vecchia, F.F. and Rascio, N. 2004. Some morphological, anatomical, physiological responses of different olive cultivars to high temperatures and drought stress. Acta. Bot. Gallica. 151: 3. 241-253.
13.Hall, K. 2002. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53: 225-245.
14.Han, B. and Bischofa, J.C. 2004. Direct cell injury associated with eutectic crystallization during freezing. Crybiolo. 48: 1. 8-21.
15.Haworth, M., Marino, G., Brunetti, C., Killi, D., Del Carlo, A. and Centritto, M. 2018. The impact of heat stress and water deficit on the photosyntheticand stomatal physiology of Olive(Olea europaea L.)- A case study of the 2017 heat wave. Plants. 7: 76. 1-13.
16.Health, L.R. and Packer, R. 1968. Photo peroxidation in isolated chloroplasts: Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 1. 189-198.
17.Hu, L.X., Hu, T., Zhang, X., Pang, H. and Fu, J.M. 2012. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J. Am. Soc. Hort. Sci. 137: 1. 38-46.
18.IPPC. 2014. Climate change 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment reports of the intergovernmental panel on climate change (Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)). IPPC, Geneva, Switzerland, 12p.
19.Khanpour Ardestani, N., Sharifi, M. and Behmanesh, M. 2015. Effect of methyl jasmonate on antioxidant enzyme activities, pheniloic and flavonoid compounds in Scrophularia steriata cell culture. J. Plant Res. 27: 5. 840-853.
(In Persian)
20.Krause, G.H. and Weis, E.1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu.Rev. Plant Physiol. Plant Mol. Biol.42: 313-349.
21.Lin, J.N. and Kao, C.H. 1998. Effects of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. Bot. Bull. Acad. Sin. 39: 161-165.
22.Lutts, S., Kinet, J.M. and Bouharmont, J. 1995. Changes in plant response of rice varities differing in salinity resistance. J. Exp. Bot. 46: 293. 1843-1852.
23.Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H. and Liang, D. 2008. Effects of high temperature and gene expression of enzymes involved in ascorbate-glutathion cycle in apple leaves. Plant Sci. 175: 761-766.
24.Mancuso, S. 2000. Electrical resistance changes during exposure to low temperature measure chilling and freezing tolerance in olive trees(Olea europeae L.) plants. Plant Cell Environ. 23: 291-299.
25.Mancuso, S. and Azarello, E. 2002. Heat tolerance in olive. Adv. Hort. Sci.16: 3-4. 125-130.
26.Marias, E.D., Meinzer, C.F. and Still, C. 2016. Impact of leaf age and heatstress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea Arabica. Ecol. Evol. 2017: 7. 1297-1310.
27.Martinelli, F., Basile, B., Morelli, G., d,Andria, R. and Tonutti, P. 2012. Effects of irrigation on fruit ripening behavior and metabolic changing in olive. Sci. Hort. 144: 201-207.
28.Mohammadi, H., Zeinanloo, A.A. and Rovshan, A.A. 2008. Thermo adaptation modeling of olive (Olea europaea L.)
in Iran. Phys. Geo. Res. 64: 37-51.(In Persian)
29.Morello, J.R., Romero, M.P., Ramo, T. and Motilva, M.J. 2005. Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci. 168: 65-72.
30.Neugart, S., Krumbein, A. and Zrenner, R. 2016. Influence of light and temperature on gene expression leading to accumulation of specific flavinol glycoside and hydroxycinnamic acid derivates in Kale (Brassica oleraceae var Sabellica). Front. Plant Sci.7: 326. 1-16.
31.Rahnama, A. 2009. Plant Physiology. Pooran Pazhouhesh, 380p. (In Persian)
32.Raymond, J., Rakariyatham, N. and Azanza, J.L. 1993. Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochem.34: 927-931.
33.Rivero, M.R., Ruiz, M.J., Garcia, C.P., Lopez-Lefebre, R.L., Sanchez, E. and Romero, L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 2. 315-321.
34.Snel, J.F.H., Van Kooten, O. and Van Hove, L.W.A. 1991. Assessment of stress in plants by analysis of photosynthetic performance. Trac-element Anal. Chem. 10: 26-30.
35.Sofo, A. 2010. Drought stress tolerance and photoprotection in two varieties of olive tree. Acta. Agr. Scand. B S P.
61: 711-720.
36.Sofo, A., Dichio, B., Xioloyannis, C. and Masia, A. 2004. Effect of different irradiance levels on some antioxidant enzymes on malondialdehyde content during rewatering in olive tree. Pant Sci. 166: 293-302.
37.Tantaswat, P., Melkonian, J., Wolf, W.D. and Steffens, J.C. 2004. Suppression of polyphenol oxidase increases stress tolerance in tomato. Plant Science. 167: 4. 693-703.
38.Vaughn, K.C. and Duke, S.O. 1981. Tentoxin-induced loss of plastidic polyphenol oxidase. Physiol. Plant.53: 421-428.
39.Vollenweider, P. and Gunthard-Goerg, M.S. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137: 3. 455-465.
40.Yamada, M., Hidaka, T. and Fukamachi, H. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll florescence. Sci. Hort.67: 1-2. 39-48.
41.Zandalinas, S.I., Rivero, M.R., Martin, V., Gomez-Cadenas, A. and Arbona, V. 2016. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in absicic acid levels. BMC Plant Biol. 16: 1. 105-120.
42.Zeinanloo, A.A. 2018. Evalution and selection of superior olive genotypes with high oil and yield. Iran. J.Hort. Sci. Technol. 19: 2. 171-184.(In Persian)
43.Zhao, X X., Huang, L.K., Zhang, X.Q., Li, Z. and Peng, Y. 2014. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities and gene expression in Orchardgrass (Dactylis glomerata L.). Mol .19: 9. 13564-13576.