Effects of rootstock type on morphological and biochemical markers related to salinity tolerance in almond cultivar Shahrood-12

Document Type : original paper

Authors

1 Department of Horticulture Science, University of Zanjan, Zanjan, Iran

2 3Temperate Fruit Research Center, Horticultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 soil and water research, agricultural research, education and development organization, Karaj, Iran

4 National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO)

Abstract

Background: The use of unsuitable water for irrigation of agricultural land and the formation of salt soils is a serious threat to agriculture. Salinity stress can affect the morphological and biochemical properties of plants. Several studies have shown that the tolerance threshold for most of the stone fruits, including almond, is low in salinity stress, so that in salinity of 2.8, 4.1 and 7 dS/m, respectively, 25, 50 and 100 percent of its yield decreases. In almond, as with other fruit trees, the choice of tolerant rootstock and scions is a very suitable strategy to reduce the effects of salinity, especially in the arid areas. The aim of this study was to investigate the morphological and biochemical characteristics of several rootstock and scions in comparison with the without rootstocks to find the most tolerance rootstock and scions combination in comparison with the without rootstocks to salinity stress.
Materials and methods: In this research, the effects of salinity stress on the biochemical properties of almond (Shahrood 12) grafted on some of the prnnus rootstocks (Bitter Almond, Tetra, GF677 and GN15) and non-grafted rootstocks under salt stress. Experiment was carried out in a factorial experiment based on a completely randomized design with two factors of 8 rootstocks and scion compositions and non-grafted rootstocks and 5 levels of salinity were performed in three replications.
Results: The results showed that increasing the salinity level from zero to eight dS.m-1, the studied morphological traits also increased to their maximum level. At the salinity level of 8 dS.m-1, the lowest (2.66%.) and the highest (7.66%) of necrosis was observed in Shahrood 12 grafted on GF677 and Shahrood 12 graft on Tetra, respectively. The results also showed that biochemical traits were affected by salinity stress, so that the highest amount of proline (67.91 μmol.g-1 fresh weight) was obtained in Shahrood 12 grafted on GF677 at 8 dS.m-1 salinity, which was significantly different with other rootstock/scion composition (almond shahrood 12 on other rootstocks) and the studied rootstocks. With increasing salinity from 0 to 8 ds.m-1, the highest (112%) and lowest (41.6%) aldehyde was observed in the Bitter Almond Seedlings and shahrood 12 grafted on GF677 respectively. With an increase in salinity up to 4 dS.m-1, the amount of phenol in all grafted and non-grafted plant was increased and reached to the maximum level, but farther increase in salinity level (up to 8 dS.m-1) significantly reduced their phenol amount.
Conclusion: Based on the results, it can be concluded that among the rootstock/scion compositions and the studied rootstocks, Shahrood 12 cultivar grafted on GF677 rootstock was the most susceptible compound to salinity stress and the same cultivar, which was grafted to the Bitter Almond Seedlings, was the most sensitive combination.

Keywords


1.Adabi Firouz Jaei, M., Zamani, Z. and Fatahi Moghadam, M.R. 2013. Study of wild and commercial pomegranates genotypes from the north of Iranusing morphological traits. J. Plant. Prod. 20: 91-109. (In Persian)
2.Alipor, H. and Ghaffari Movafagh, F. 2011. Evaluation of genetic variation in Iranian pistachio cultivars using morphological characteristics. Iran. J. Hort. Sci. 42: 73-82. (In Persian)
3.Azimi, M., Taghadosi, M.V. and Maleki, B. 2008. In the translation of classification, origin, diffusion and history of the olive. Zanjan university Press. (In Persian)
4.Barranco, D. and Rallo, L. 2000.Olive Cultivars in Spain. Hort. Technol. 10: 107-110.
5.Barranco, D., Cimato, A., Fiorino, P., Rallo, L., Touzani, A., Castañeda, C., Serafín, F. and Trujillo, I. 2000. World catalogue of olive varieties. International olive oil council. Madrid. Spain.
6.Bencic, D., Lolic, T. and Sindrak, T. 2010. Morphological diversity of olive (Olea europaea L.) variety Lastovka phenotypes in the northwestern part of the island of korcula. Seed. Sci. 26: 153-159.
7.Belaj, A., Leon, L., Satovic, Z. andDe La Rosa, R. 2011. Variability ofwild olives (Olea europaea subsp. Europaea var. Sylvestris) analyzed by agro-morphological traits and ssr markers. Sci. Hort. 129: 561-569.
8.Caballero, J.M., Del Rio, C., Barranco, D. and Trujillo, I. 2006. The olive world germplasm bank of cordoba. Spain. Olea. 25: 14-19.
9.Darvishiyan, M. 1997. Olive. Agricultural education press, 295p. (In Persian) 
10.Dastkar, E., Soleimani, A., Jafary, H. and Naghavi, M.R. 2013. Discriminant and cluster analyses of olive cultivars based on IOC protocol. J. Hort. Sci. Technol. 13: 259-270. (In Persian)
11.Ertekin, C., Gozlekci, S., Kabas, O., Sonmez, S. and Akinci, I. 2006. Some physical, pomological and nutritional properties of two plums (Prunus domestica L.) Cultivars. Euphytica.75: 508-514.
 12.Garcia-Donas Diaz, M. 2001. Caracterizacin morfolgica, agronmica y elaiotecnica de los acebuches de la provincia de cgdiz. Universidad de crdoba. Trabajo profesional de fin de carrera.
13.Garcia-Verdugo, C., Forrest, A.D., Balaguer, L., Fay, M.C. and Vargas, P. 2010. Parallel evolution of insularOlea europaea subspecies based on geographical structuring of plastid DNA variation and phenotypic similarity in leaf traits. Bot. J. Lin. Soc. 162: 54-63.
14.Ghasemi, A. 2007. Identification and collection of native varieties and wild species of almond from feridonshahr. Proceedings of the 5th Iranian horticultural sciences congress. University of Shiraz. Iran. 610p. (In Persian)
15.Gitonga, L., Kahangi, E., Muigai, A., Ngamau, K., Gichuki, S., Cheluget, W. and Wepukhulu, S. 2008. Assessment of phenotypic diversity of macadamia (Macadamia spp.) germplasm in Kenya using leaf and fruit morphology. Afric. J. Plant. Sci. 2: 86-93.
16.Hajilo, J., Gerigorian, W., Mohammadi, A. and Nazemieh, A. 2007. Study of pollen tube growth stop under controlled pollination in some apricot cultivars, proceedings of the 5th Iranian horticultural sciences congress. University of Shiraz. Iran. 221p. (In Persian)
17.Hannachi, H., Breton, C., Msallem, M., Ben El Hadj, S., El Gazzah, M. and Berville, A. 2008. Differences between native and introduced cultivars as revealed by morphology of drupes. Oil composition and SSR polymorphism;a case study in Tunisia. Sci. Hort.116: 280-290.
18.Hannachi, H., Sommerlatte, H., Breton, C., Msallem, M., El Gazzah, M., BenEl Hadj, S. and Berville, A. 2009. Oleaster (Var. Sylvestris) and subsp. Cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. Europaea var. Europaea). Gen. Res. Crop. Evol.56: 393-403.
19.Homapour, M., Hamedi, M., Moslehishad, M. and Safafar, H. 2014. Physical and chemical properties of olive oil extracted from olive cultivars grown in Shiraz and kazeroon. Iran. J. Nut. Sci. Food. Technol. 9: 121-130.(In Persian)  
20.Idrissi, A. and Quazzani, N. 2003. Contribution of morphological descriptor to the inventory and identification of olive (Olea europaea L.) Varieties. PGR newsletter (FAO- IPGRI). 136: 1-10.
21.Jalali, A. 2013. Study of diversity of olive genotypes of hashemabad province based on fruit traits and oil quality. Master's Thesis of GorganUniversityof Agricultural Sciences and Natural Resources. (In Persian) 
22.Jalili, I., Rabiee, V., Azami, M.A. and Daghestani, M. 2011. Genotypic diversity of prune and plum using morphological characteristics in maragheh region. Seed. Plant. Improv. 27: 357-374. (In Persian)
23.Janatizade, A., Fattahimoghadam, M.R., Zamani, Z.A. and Zeraatgar, H. 2011. Genetic variation of some apricot cultivars and genotypes using morphological characteristics and rapd markers. Iran. J. Hort. 42: 255-265.(In Persian)
24.Mousavi Ghahfarrokhi, A., Fattahi Moghaddam, M.R., Zamani, Z. and Imani, A. 2010. Evaluation of qualitative and quantitative characteristics of some almond cultivars and genotypes. Iran. J. Hort. Sci.41: 119-131. (In Persian)
25.Mulas, M. 1999. Characterizationof olive wild ecotypes. Acta Hort.474: 121-124.
26.Mulas, M., Fadda, A. and Cauli, E. 2004. Prime osservazioni su cloni di oleastro (Olea europaea var Sylvestris hoff-e-link) selezionati per l’ utilizzo forestale. Italus Hortus. V11. Pp: 214-217.
27.Naotoshi, H., Ryutaro, T., Toshihiro, T., Isao, O., Shunji, I. and Isao, S. 1998. Morphological characteristic of the interspecific hybrids between Japanese apricot (Prunus mume) and plum(P. Salicina). J. Japan. Soc. Hort. Sci. 67: 708-714.
 28.Nezamivand Chegini, M., Samizadeh Lahiji, H.A., Ramezani Malakroodi, M. and Mohsenzadeh Golfazani, M. 2016. Assessment of genetic diversity among four olive cultivars use morphological markers. J. App. Crop. Breed. 3: 201-213. (In Persian)
29.Nikzad, N., Sahari, M.A., Ghavami,M., Piravivanak, Z., Hoseini, S.E., Safafar, H. and Bolandnazar, S.A. 2013. Physico-chemical properties and nutritional indexes of cultivars during table olive processing. Food Sci. Tech. Res. J.39: 31-41. (In Persian)  
30.Poreskandari, E., Soleymani, H., Saba, J. and Taheri, M. 2013. The evaluation of pomological characteristics and grouping of some olive cultivars in zanjan province. Seed. Plant Improv. 29: 623-636. (In Persian)
31.Sadeghi, H. 2002. Planting, having, and picking olive. Agricultural education Press. Pp: 3-25. (In Persian) 
32.Torkzaban, B., Ataei, S., Saboora, A. and Hoseini Mazinani, S.M. 2010. Study of variation of some unknown olive genotypes in collecyion of tarom research station in Iran, applying morphological markers. Iran. J. Biol.23: 520-531. (In Persian)
33.Valizadegan, S., Tabatabaei, I., Tavasoli, A. and Vazifeshenas, H.R. 2009. Study of multi variate procedures statistics in some Iranian pomegranate genotypes using morphological markers. J. Sci. 21: 66-75. (In Persian)
34.Zeinalabedini, M., Majourhat, K., Khayam-Nekoui, M., Grigorian, V., Torchi, M., Dicenta, F. and Martinez-Gomez, P. 2007. Comparison of the use of morphological, protein and DNA markers in the genetic characterization of Iranian wild prunus species. Euphytica. 116: 80-88.