1.Bacon, M. 2009. Water use efficiency in plant biology. John Wiley & Sons, 327p.
2.Beale, S.I. 1999. Enzymes of chlorophyll biosynthesis. Photosyn. Res. 60: 1. 43-73.
3.Bidinger, F.R., Mahalakshmi, V. and Rao, G.D.P. 1987. Assessment of drought resistance in pearl millet (Pennisetum americanum L.). Estimation of genotype response to stress. Aust. J. Agric. Res.38: 1. 49-59.
4.Bongi, G., Mencuccini, M. and Fontanazza, G. 1987. Photosynthesis of olive leaves: effect of light flux density, leaf age, temperature, peltates, and H2O vapor pressure deficit on gas exchange.J. Amer. Soc. Hort. Sci. 112. 143-148.
5.Cha, K.W., Lee, Y.J., Koh, H.J., Lee, B.M., Nam, Y.W. and Paek, N.C. 2002. Isolation, characterization, and mapping of the stay green mutant in rice. Theor. Appl. Genet. 104: 4. 526-532.
6.Chatzistathis, T., Therios, I., Patakas, A. and Gianakoula, A. 2006. The influence of manganese nutrition on the photosynthetic rate, transpiration, stomatal conductance and chlorophyll fluorescence of two olive cultivars. In Proceedings of the 2nd International Seminar Olive bioteq. pp. 5-10.
7.Claussen, W. 2005. Proline as a measure of stress in tomato plants. Plant Sci.168: 1. 241-248.
8.Connor, D.J. 2005. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res.56: 11. 1181-1189.
9.DaCosta, M., Wang, Z. and Huang, B. 2004. Physiological adaptation of Kentucky bluegrass to localized soil drying. Crop Sci. 44: 4. 1307-1314.
10.Díaz-Espejo, A., Walcroft, A.S., Fernández, J.E., Hafidi, B., Palomo, M.J. and Girón, I.F. 2006. Modeling photosynthesis in olive leaves under drought conditions. Tree Physiol.26: 11. 1445-1456.
11.Ehleringer, J.R. 1990. Correlations between carbon isotope discrimination and leaf conductance to water vapor
in common beans. Plant Physiol.93: 4. 1422-1425.
12.Ehteshamnia, A. and Zahedi, B. 2017. Study of the effect of growth area on fatty acids of four olive varieties in Lorestan province. J. Plant Prod. 24: 2.
13.Fokar, M., Blum, A. and Nguyen, H.T. 1998. Heat tolerance in spring wheat. Grain filling. Euphytica, 104: 1. 9-15.
14.Foyer, C.H. and Galtier, N. 1996. Source-sink interaction and communication in leaves. Photoassimilate distribution in plants and crops. Source-sink relationships. pp. 331-340.
15.Hare, P.D., Cress, W.A. and Van Staden, J. 1997. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23: 1. 79-103.
16.Hare, P.D., Cress, W.A. and VanStaden, J. 1999. Proline synthesisand degradation: a model systemfor elucidating stress-related signal transduction. J. Exp. Bot. 50: 3. 413-434.
17.Johnson, M.S. and Leah, R.T. 1990. Effects of superabsorbent polyacrylamides on efficiency of water use by crop seedlings. J. Sci. Food Agric. 52: 3. 431-434.
18.Kirschbaum, M.U.F. 2004. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol. 6: 03. 242-253.
19.Medrano, H., Escalona, J.M., Bota, J., Gulías, J. and Flexas, J. 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance asa reference parameter. Ann. Bot.89: 7. 895-905.
20.Morgan, J.M. 1984. Osmoregulation and water stress in higher plants. Ann. Rev. Plant Physiol. 35: 1. 299-319.
21.Mueller, L., Behrendt, A., Schalitz, G. and Schindler, U. 2005. Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric. Water Manag. 75: 2. 117-136.
22.Norman, J.M. and Welles, J.M. 1983. Radiative Transfer in an Array of Canopies. Agron. J. 75: 3. 481-488.
23.Olsen, S.R. and Sommers, L.E.1982. Phosphorus in methods of soil analysis. Chemical and microbiological properties. Agron. Monogr. 9: 421-422.
24.Richards, R.A., Rebetzke, G.J., Condon, A.G. and Van Herwaarden, A.F. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci.42: 1. 111-121.
25.Ross, J. 2012. The radiation regime and architecture of plant stands. Springer Science & Business Media, Pp: 167-154.
26.Smirnoff, N. and Cumbes, Q.J. 1989. Hydroxyl radical scavenging activityof compatible solutes. Phytochemistry.
28: 4. 1057-1060.
27.Soltani, S., Seyfi, E., Ghasem-Nejad, A. and Fereydoni, H. 2016. Study of some of the cultivars and genotypes of native and foreign olives in terms of morphological diversity, oil quality and fatty acid composition. J. Plant Prod.23: 2.
28.Talhaoui, N., Taamalli, A., Gómez-Caravaca, A.M., Fernández-Gutiérrez, A. and Segura-Carretero, A. 2015. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 77: 92-108.
29.Tanaka, A. and Tanaka, R. 2006. Chlorophyll metabolism. Curr. Opin. Plant Biol. 9: 3. 248-255.
30.Therios, I.N. 2009. Olives. CABI.31.Tisdale, S.L. and Nelson, W.L. 1966. Soil fertility and fertilizers. Soil Sci. 101: 4. 346.
32.Van Rensburg, L., Krüger, G.H.J. and Krüger, H. 1993. Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J. Plant Physiol. 141: 2. 188-194.
33.Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1997. Regulation of levels of proline as an osmolyte in plantsunder water stress. Plant Cell Physiol. 38: 10. 1095-1102.