Uptake and nitrogen remobilization of barley under deficit irrigation in presence of plant residue and Azospirillum bacteria

Document Type : scientific research article

Authors

1 M.Sc. Student, Dept. of Agroecology, Faculty of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran

2 Assistant Prof., Dept. of Agroecology, Faculty of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran

3 Associate Prof., Dept. of Agroecology, Faculty of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran

Abstract

Background and objectives: Grain N content in barley plant is affected by N remobilization from vegetative organs to the grain during the grain filling period. The amount of N remobilization is negatively affected by the severe water stress after anthesis. Using of Azospirillum as a biofertilizer is a way for reduction the adversely effects of the severe water stress in the arid regions. Another way is increase the amount of soil organic matter (such as using of plant residues). Therefore, this study investigated the effects of wheat residues application and different N sources (biological and chemical) on N remobilization and grain N content of barley.
Materials and Methods: This research was conducted at the experimental farm of the Darab Agricultural College of Shiraz University. A split factorial experiment in a randomized complete block design with three replicates were carried out in 2017 - 2018 growing season. Treatments included: two levels of irrigation as the main plots [normal irrigation (IRN): irrigation based on the plant's water requirement up to the physiological maturity and another factor was deficit irrigation (IRDI): irrigation based on the plant's water requirement up to the anthesis stage (cutting of irrigation after anthesis)]. Also, sub plots were two levels of plant residues [1. without residue, 2. returning 30% of wheat residues to soil] and four fertilizer sources [N0, no nitrogen fertilizer (control); N100, 100 kg N ha-1; Bio + N50, Biofertilizer (Azospirillum brasilense) + 50 kg N ha-1 and Bio, Biofertilizer (Azospirillum brasilense)].
Results: Application of N100 and Bio + N50 treatments significantly increased the N remobilization efficiency by 36% and 34%, respectively, as compared with the control (N0) under IRN. In contrast, under IRDI condition, all N sources decreased the N remobilization efficiency as compared with the control (N0). However, the amount of reduction in Bio + N50 and Bio treatments (10% and 11%, respectively) was lower than N100 (21%). The similar trend of N remobilization efficiency was observed for N harvest index in IRN and IRDI. Nitrogen harvest index showed a positive and linear relationship with N remobilization efficiency under both irrigation regimes. However, the justified variation of the N harvest index by N remobilization efficiency under IRDI was higher than (25%) the IRN conditions (R2 = 0.70 and R2 = 0.45). Also, Grain N content linearly increased with increasing N remobilization under both irrigation regimes. Application of wheat residues significantly reduced the N remobilization efficiency and grain N content in Bio + N50 and Bio treatments as compared to non-applied of residue. Also, there was no significant difference between with and without residue treatments in N remobilization efficiency and grain N content when N100 treatment was applied.
Conclusion: According to the environmental and economic considerations, integrated N fertilizer [Biofertilizer (Azospirillum brasilense) + 50 kg N ha-1] is recommended for normal irrigation conditions in order to maximum grain protein content achievement. In contrast, under cutting of irrigation after anthesis conditions, biofertilizer treatments (using of Azospirillum brasilense alone or using of it with integration to 50 kg N ha-1) reduced N remobilization efficiency as compared with control (N0). However, the decrement values were lower than the sole chemical N fertilizer (100 kg N ha-1). Therefore, in Southern Iran where water stress after anthesis is possible, biofertilizers is recommended. Also, using of wheat residues is not recommended for increasing N remobilization efficiency and consequently grain N content across over all irrigation and N regimes.

Keywords


1.Akbari, F., Dahmardeh, M., Morshdi, A., Ghanbari, A. and Khoramdel, S. 2019. Effects of tillage system and plant residue on nitrogen uptake and use efficiency in corn and bean intercropping systems. J. Crop Improv. 20: 4. 785-799. (In Persian)
2.Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. 1998. Crop evapotranspiration. Guide lines for computing crop water requirements (Irrigation and Drainage Paper 56) Food and Agriculture Organization, Rome.
3.Bahrani, A. and Tahmasebi Sarvestani,Z. 2007. Effect of rate and times of nitrogen application on accumulation and remobilization efficiency of flag leaf in two wheat cultivars. J. Water Soil Sci.11: 40. 147-155. (In Persian)
4.Barati, V. and Ghadiri, H. 2016. Effects of drought stress and nitrogen fertilizer on yield, yield components and protein content of two barley cultivars. J. Crop Prod. Process. 6: 20. 191-207. (In Persian)
5.Barati, V. and Ghadiri, H. 2017. Assimilate and nitrogen remobilization of six-rowed and two-rowed winter barley under drought stress at different nitrogen fertilization. Arch. Agron. Soil Sci.63: 6. 841-855.
6.Barati, V., Ghadiri, H., Zand-Parsa, S. and Karimian, N. 2015. Nitrogen and water use efficiencies and yield response of barley cultivars under different irrigation and nitrogen regimes in a semi-arid mediterranean climate. Arch. Agron. Soil Sci. 61: 1. 15-32.
7.Ebrahimian, E., Koocheki, A., Nasiri Mahalati, M., Khorramdel, S. and Beheshti, A. 2016. Effects of tillage systems and residue application rate on nitrogen uptake and use efficiency in wheat (Triticum aestivum L.). Cereal Res. 6: 1. 79-88. (In Persian)
8.Emam, Y. 2007.Cereal production. Shiraz Univ. Press, 190p. (In Persian)
9.Ercoli, L., Lulli, L., Mariotti, M., Masoni, A. and Arduini, I. 2008. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. Eur. J. Agron.28: 2. 138-147.
10.Khamadi, F., Mesgarbashi, M., Hosaibi, P., Enaiat, N. and Farzaneh, M. 2015. The effect of crop residue and nitrogen fertilizer levels on soil biological properties and nitrogen indices and redistribution of dry matter in wheat (Triticum aestivum L.). Appl Field Crop Res. 28: 4. 149-157. (In Persian)
11.Khodshenas, M.A., Ghadbeiklou, J. and Dadivar, M. 2015. The effects of source and rate of nitrogen fertilizer and irrigation on nitrogen uptake of silage corn and residual soil nitrate. J. Water. Soil. 29: 6. 1640-1650. (In Persian)
12.Khosravi, E. 2015. Azotobacter and its role in soil fertility management. Land Manag. J. 2: 2. 79-94. (In Persian)
13.Kiani, S., Siadat, S.A., Moradi Telavat, M.R., Abdali Mashhadi, A.R. and Sare, M. 2014. Effect of nitrogen fertilizer application on forage yield and quality of barley (Hordeum vulgare L.) and fennel (Foeniculum vulgare L.) intercropping. I. J. Crop Sci. 16: 2. 77-90. (In Persian)
14.Muurinen, S., Kleemola, J. and Peltonen-Sainio, P. 2007. Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agron. J. 99: 2. 441-449.
15.Niazi-ardakani, M., Barati, V., Bijanzadeh, E. and Behpoori, A. 2020. Effects of different nitrogen fertilizer sources and crop residues on yield and yield components of barley (Hordeum vulgare L.) under late season water stress conditions. Agro. Ecol. 12: 1. 107-126. (In Persian)
16.Rasmussen, P.E. and Rohde, C.R. 1991. Tillage, soil depth, and precipitation effects on wheat response to nitrogen. Soil Sci. Soc. Am. J. 55: 1. 121-124.
17.Rostami, M. and Ahmadi, A. 2014. Investigation the effect of nitrogen forms and split fertilization on grain yield and nitrogen content of twocorn hybrids. Appl Field Crop Res.27: 104. 40-46. (In Persian)
18.Sadeghi, H. 2007. Effects of crop residue and nitrogen rate on morpho-physiological traits, yield and yield components of two dry land wheat (Triticum aestivum L.) cultivars. Ph.D. dissertation, Faculty of Agriculture, University of Shiraz, Iran. (In Persian)
19.Sadeghi, H. and Kazemeini, S.A.R. 2015. Effect of crop residue management and nitrogen fertilizer on grain yield and yield components of two barley cultivars under dryland conditions. Iranian J. Crop Sci. 13: 3. 436-451. (In Persian)
20.Salvagiotti, F., Castellarín, J.M., Miralles, D.J. and Pedrol, H. M. 2009. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crop Res.113: 2. 170-177.
21.Sarig, S., Blum, A. and Okon, Y. 1988. Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agr. Sci. 110: 2. 271-277.
22.Shahpari, F. and Fateh, E. 2016. Different residue type and management and nitrogen on yield and quality of durum wheat (Triticum durum L.). J Crop Prod. 9: 3. 87-104. (In Persian)
23.Xu, Z.Z., Yu, Z.W. and Wang, D. 2006. Nitrogen translocation in wheat plants under soil water deficit. Plant soil.
280: 1-2. 291-303.
24.Yang, J. and Zhang, J. 2006. Grain filling of cereals under soil drying. New Phytol. 16: 2. 223-236.
25.Zadoks, J.C., Chang, T.T. and Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Res.
14: 6. 415-421.