1.Terfa, M.T., Solhaug, K.A., Gislerød, H.R., Olsen, J.E. and Torre, S. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa hybrida but does not affect time to flower opening. Physiol. Plant. 148: 1. 146-159.
2.Pazourek, J. 1970. The Effect of light intensity on stomatal frequency in leaves of Iris hollandica hort. vats. Wedgwood. Biol. Plant. 12: 208-215.
3.Uddin, A.F., Hashimoto, M.J., Kaketani, M., Shimizu, K. and Sakata, Y. 2001. Analysis of light and sucrose potencies on petal coloration and pigmentation of lisianthus cultivars (in virto). Sci. Hort. 89: 73-82.
4.Briggs, W.R. and Huala, E. 1999. Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol. 15: 33-62.
5.Brown, C., Shuerger, A.C. andSager, J.C. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Am. Soc. Hort. Sci. 120: 808-813.
6.Li, H., Xu, Z. and Tang, C. 2010. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss Organ Cult.103: 155-163.
7.Li, Q. and Kubota, C. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67: 59-64.
8.Massa, G.D., Kim, H.H., Wheeler,R.M. and Mitchell, C.A. 2008. Plant productivity in response to LED lighting. Hort. Sci. 43: 1951-1955.
9.Farquhar, G.D. and Sharkey, T.D. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33: 317-345.
10.Morison, J.I.L. 1987. Intercelluar CO2 concentration and stomatal response to CO2. In: Zeiger E Farquhar GD Cowan IR eds. Stomatal function. Stanford University Press. pp. 229-252.
11.Miskin, E. and Rasmusson, D.C. 1970. Frequency and distribution of stomata in barley. Crop. Sci. 5: 575-578.
12.Neales, T.F. 1970. Effect of ambient carbon dioxide concentration on the rate of transpiration of Agave americana in the dark. Nature. 228: 880-882.
13.Nishida, K. 1963. Studies on stomatal movement of crassulaceae plants in relation to the acid metabolism. Physiol. Plant. 16: 281-298.
14.Kim, S.J., Hahn, E.J., Heo, J.W. and Paek, K.Y. 2004 b. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort. 101: 1-2. 143-151.
15.Kumar, M., Singh, V.P., Arora, A. and Singh, N. 2014. The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence. Acta Physiol. Plant.36: 151-159.
16.Folta, K.M., Lieg, E.J., Durham, T. and Spalding, E.P. 2003. Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol. 133: 1464-1470.
17.Johkan, M., Shoji, K., Goto, F., Hashida, S.N. and Yoshihara, T. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortSci. 45: 12. 1809-1814.
18.Masarovi, E. and Tefancik, X. 1990. Some ecophysiological features in sun and shade leaves of tall beech trees. Biol. Plant. 35: 374-387.
19.Romero-Aranda, R. and Canto-Gara, R. 1994. Distribution and density of stomata in two cultivars of Gerbera jamesonii and its relation to leaf conductance. Sci. Hort. 58: 167-173.
20.Särkkä, L.E., Jokinen, K., Ottosen, C.O. and Kaukoranta, T. 2017. Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield. Agric. Food Sci. 26: 2. 102-110.
21.Taiz, L. and Zieger, E. 2002. Plant Physiology, Ed 5. Sinauer Associates, Sunderland, MA.
22.Stutte, G.W. 2009. Light-emitting diodes for manipulating the phytochrome apparatus. HortSci. 44: 231-234.
23.Sabzalian, M.R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, M.R. and Schoefs, B. 2014. High performance of vegetables, flowers and medicinal plants in a red-blue LED incubator for indoor plant production. Agron. Sustain. Dev. 34: 4. 879-886.
24.Nichols, R. and Ho, L.C. 1975. Effects of ethylene and sucrose on translocation of dry matter and 14C-sucrose in the cut flower of the glasshouse carnation (Dianthus caryophyllus) during senescence. Ann. Bot. 39: 287-296.
25.Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Method. Enzymol. 148: 350-382.
26.Hedge, J.E. and Hofreiter, B.T. 1962. Estimation of carbohydrate. Methods in carbohydrate chemistry. Academic Press, New York, pp. 17-22.
27.Wagner, G.J. 1979. Content and vacuole extravacuole distribution of neutral sugars, free amino acids and anthocyanins in protoplast. Plant Physiol. 64: 88-93.
28.Appelgren, M. 2003. Effects of light quality on stem elongation of Pelargonium in vitro. Sci. Hort. 45: 345-351.
29.Dougher, T.A. and Bugbee, B.G. 2004. Long-term blue light effects on the histology of lettuce and soybean leaves and stems. J. Am. Soc. Hort. Sci.129: 467-472.
30.Currey, C.J. and Lopez, R.G. 2013. Cuttings of Impatiens, Pelargonium, and Petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. HortSci. 48: 428-434.
31.Talbott, L.D., Zhu, J., Hon, S.W. and Zeiger, E. 2002. Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum. Plant Cell Physiol. 43: 639-646.
32.Hovi-Pekkanen, T. and Tahvone, R., 2008. Effects of interlighting on yield and external fruit quality in year-
round cultivated cucumber. Sci. Hort.116: 2. 152-161.
33.Pettersen, R.I., Torre, S. and Gislerod, H.R. 2010. Effect of intra-canopy lighting on photosynthetic characteristic in cucumber. Sci. Hort. 125: 77-81.
34.Raschke, K. and Dittrich, P. 1977.[14C] Carbondioxide fixation by isolated epidermes with stomata dosed or open. Planta. 134: 69-75.
35.Nhut, D.T., Takamura, T., Watanabe, H., Okamoto, K. and Tanaka, M. 2003. Responses of strawberry plantlets cultured in vitro under super brightred and blue light-emitting diodes (LEDs). Plant Cell, Tiss Organ Cult.73: 1. 43-52.
36.Martineau, V., Lefsrud, M. and Nanzin, M.T. 2012. Comparison of light-emitting diode and high pressure sodium light treatments for hydroponics growth of Boston lettuce. HortSci. 47: 477-482.
37.Lokstein, H., Renger, G. and Götze, J.P. 2021. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules, 26: 11. 3378.
38.Fan, X., Zang, J., Xu, Z., Guo, S., Jiao, X., Liu, X. and Gao, Y. 2013. Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiol. Plant. 35: 9. 2721-2726.
39.Lan-Lan, Y., Chang-mei1, S., Lin-jing, S., Li-li, L., Zhi-gang, X. and Can-ming, T. 2020. Effects of light-emitting diodes on tissue culture plantlets and seedlings of rice (Oryza sativa L.). J. Integrat. Agric. 19: 7. 1743-1754.
40.Lejeune, P., Bernier, G., Requier, M. and Kinet, J. 1993. Sucrose increase during floral induction in the phloem sap collected at the apical part of the shoot of the long-day plant Sinapis alba L. Planta. 190: 71-74.
41.Corbesier, L., Bernier, G. and P´erilleux, C. 2002. C: N Ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant Cell Physiol. 43: 684-688.
42.Solfanelli, C., Poggi, A., Loreti, E.,Alpi, A. and Perata, P. 2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140: 637-646.
43.Cominelli, E., Gusmaroli, G., Allegra, D., Galbiati, M., Wade, H.K., Jenkins, G.I. and Tonelli, C. 2008. Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J. Plant Physiol. 165: 886-894.
44.Li, H., Tang, C., Xu, Z., Liu, X., and Han, X. 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J. Agric. Sci. 4, 262–273.
45.Kim, H.H., Goins, G.D., Wheeler, R.M. and Sager, J.C. 2004. Green-light supplementation for enhanced lettuce growth under red and blue-light-emitting diodes. HortSci. 39: 1617-1622.
46.Kim, J.S., Lee, B.H., Kim, S.H., Oh, K.H. and Cho, K.Y. 2006. Responses to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf. J. Plant Biol. 49: 16-15.
47.Mor, Y., Halevy, A.H. and Porath, D. 1980. Characterization of the light reaction in promoting the mobilizing ability of rose shoot tips. Plant Physiol. 66: 996-1000.