Use of symbiotic fungi to reduce the phytotoxic effect of chromium in Lettuce (Lactuca sativa L.) in hydroponic condition

Document Type : scientific research article

Authors

1 M.Sc. Student, Dept. of Horticulture Science, Faculty of Agriculture, Mohaghegh Ardabili University, Ardabil, Iran.

2 Corresponding Author, Associate Prof., Dept. of Horticulture Science, Faculty of Agriculture, Mohaghegh Ardabili University, Ardabil, Iran.

3 Associate Prof., Dept. of Horticulture Science, Faculty of Agriculture, Mohaghegh Ardabili University, Ardabil, Iran.

4 Professor, Dept. of Horticulture Science, Faculty of Agriculture, Mohaghegh Ardabili University, Ardabil, Iran.

5 Assistant Prof., Dept. of Horticulture Science, Faculty of Agriculture, Mohaghegh Ardabili University, Ardabil, Iran

Abstract

Use of symbiotic fungi to reduce the phytotoxic effect of chromium in Lettuce (Lactuca sativa L.) in hydroponic condition

Abstract
Introduction: Chromium (Cr) is a toxic metal usually found in many regions and countries, because of excessive discharge of Cr-containing effluents resulting from industrial and agricultural activities. In higher plants, Cr is not essential to plant growth. Exposure to Cr may cause tissue necrosis and limit chlorophyll production. In particular, it is usually involved in electron transfer and induce production of reactive oxygen species (ROS) e.g., hydroxyl radicals and superoxide radicals, resulting in oxidative stresses and damages to plant cells and tissues. Symbiosis fungi significantly accelerate plant growth by improving water and nutrient uptake, early flowering, seed production and greater photosynthetic rate. These fungi change the production of secondary metabolites and enhance adaptation and tolerance to biotic and abiotic stresses. this study aimed to investigate the role of mycorrhizal and endophytic fungi (Glomus intradises and P. indica) as possible tools to reduce the phytotoxicity of Cr.
Materia and Method: In order to evaluate the effect of different concentrations of Cr (0, 3 and 15 mg L-1), and symbiotic fungi on growth and physiological properties of lettuce (Lactuca sativa cv. Little Jem), an experiment was carried out as factorial split plot based on Completely randomized design with four replications as soilless system at research greenhouse of University of Mohaghegh Ardabili, in 2021. In this experiment Cr and nitrogen content, root colonization, root and shoot dry weight, leaf number, stem and leaf dry and fresh weight, chlorophyll and carotenoid content, stomatal conductance, electrolyte leakage, ascorbate peroxidase and catalase activities, hydrogen peroxide and were measured.
Results: The results showed that with increasing the concentration of Cr in the symbiotic colonization percentage, nitrogen content, dry weight of roots and shoots, chlorophyll and carotenoid content, stomata conductance and soluble protein decreased. While the content of electrolyte leakage, hydrogen peroxide and ascorbate peroxidase and catalase activity increased. Plants inoculated with symbiotic fungi P. indica and G. intradises were able to reduce the negative effects of Cr toxicity by reducing chromium uptake and increasing nitrogen uptake, root symbiotic percentage, chlorophyll content and activity of ascorbate peroxidase, catalase and hydrogen peroxide.
Conclusion: In general, it is concluded that with increasing the concentration of Cr in the nutrient solution, lettuce growth decreased and the use of symbiotic fungi could improve the morphological characteristics and yield of lettuce under Cr stress
Keywords: Mycorrhiza , Soilless system, Chromium, Lettuce

Keywords

Main Subjects


1.Jordao, C. P., Nascentes, C. C., Fontes, R. L. F., Cecon, P. R. & Pereira, J. L. (2007). Effects of composted urban solid wastes addition on yield and metal contents of lettuce. J. Braz. Chem. Soc. 18, 195-204.
2.Gao, Y. Z. & Zhu, L. Z. (2005). Phytoremediation for phenanthrene and pyrene contaminated soils. J. Environ. Sci-Amsterdam. 17, 14-18.
3.Kuo, S., Lai, M. S. & Lin, C. W. (2006). Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Environ. Pollut. 144, 918-925.
4.Ashraf, A., Bibi, I., Niazi, N. K., Ok, Y. S., Murtaza, G., Shahid, M., Kunhikrishnan, A., Li, D. & Mahmood, T. (2017). Chromium (VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int. J. Phytoremediation. 19, 605-613.
5.Shamsu, H., Gulshan, K., Mohammad, I., Arif, S. H., Bhumi, N. & Aqil, A. (2012). Physiological changes induced by chromium stress in plants: an overview. Protoplasma. 249, 599-611.
6.Jianmin, T., Jingyi, X., Yongsheng, W., Yansheng, L. & Qian, T. (2012). Effects of high concentration of chromium
stress on physiological and biochemical characters and accumulation of chromium in tea plant (Camellia sinensis L.). Afr. J. Biotech. 11 (9), 2248-2255.
7.Varma, A., Sativa, S., Sahay, N., Butehorn, B. & Franken, P. (1998). Piriformospora indica, a cultivable plant growth-promoting root endophyte. Appl. Environ. Microbiol. 65, 2741-2744.
8.Wu, Q. S., Zou, Y. N., Liu, W., Ye, X. F., Zai, H. F. & Zhao, L. J. (2010). Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ. 56, 470-475.
9.Gholami, A., Khalvandi, M., Amerian, M., Pirdashti, H. & Baradaran, M. (2017). Effects of Piriformospora indica fungi symbiotic on the quantity of essential oil and some physiological parameters of peppermint in saline conditions. Iran J. Plant Biol. 32, 1-20. [In Persian]
10.Smith, S. E. & Read, D. J. (2008). Mycorrhizal Symbiosis. 3rd ed. San Diego, CA: Academic Press, 787p.
11.Rasooli Sadeghiani, M., Vahedi, R. & Brin, M. (2018). Effect of rhizosphere on soil element availability in the presence of biochar and compost, pruning wastes and mycorrhizal inoculation. J. Soil Manag. Sustain. Prod. 8 (1), 107-124.
12.Becerril, F. R., Calantzis Turnau, C., Caussanel, J. P., Belimov, A. A., Gianinazzi, S., Strasser, R. J. & Pearson, V. G. (2002). Cadmium accumulation and buffering of cadmium industed stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp. Bot. 53, 1177-1185.
13.Heydarian, A., Tawhidi Moghaddam, H. & Kasraei, P. (2017). Evaluation of the effect of Glomus intraradices
on quantitative and qualitative characteristics of wheat under nickel stress conditions. Iran. Crop Sci. 48 (3), 685-693.
14.Gonzalez-Guerrero, M., Alcon-Aguilar, C., Mooney, M., Balderas, A., MacDiarmid, C. W., Edie, D. J. & Ferrol, N. (2005). Characterization of a Gloms intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet. Biol. 42 (2), 130-140.
15.Daneshfar, A., Asgharzadeh, N., Ostan, Sh. & Khoshrou, B. (2018). The role of Rhizophagus irregularis in modulating lead uptake by sunflower. Agric. Knowl. Sustain. Prod. 28 (1), 27-50.
16.Hoagland, D. R. & Arnon, D. S. (1950). The water culture method for growing plants without soil. California Agriculture Experimental Station Circular. 374, 1-32.
17.Arnon, D. (1949). Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol.
24 (1), 1-15.
18.Errsus, S. & Barrett, D. (2010). Determination of membrane integrity in onion tissues treated by pulsed electric fields: Use of microscopic images and ion leakage measurements. Innov. Food Sci. Emer. Technol. 11 (14), 598-603.
19.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254.
20.Sergiev, I., Alexieva, V. & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de l’Academie Bulgare des Sciences, 51, 121-124.
21.Nakano, Y. & Asada, K. (1987). Purification of ascorbate peroxidase in Spinach chloroplasts; its inactivation in Ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28 (1), 131-140.
22.Gong, M., Li, Y., Dai, X. & Tian, M. 1997. Involvement of calcium and calmodulin in the acquisition of HS induced thermotolerance in maize seeding, J. Plant Physiol. 150, 615-621.
23.Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N. & Grossi, J. A. S. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J. Plant Nutr. 25, 2389-2407.
24.Varma, A., Fekete, A., Srivastava, A., Saxena, A. K., Frommberger, M., Li, D., Gschwendter, S., Sheramati, I., Oelmueller, R., Kopplin, P. S., Tripathi, S. & Hartmann, A. (2012). Inhibitory interactions of rhizobacteria with the symbiotic fungus Piriformospora indica. In: Varma, A., Oelmueller, R. (eds.) Sebacinales. Springer, Berlin.
25.Pal, P., McMillan, A. M. S. & Saggar, S. (2016). Pathways of dicyandiamide uptake in pasture plants: A laboratory study. Biol. Fertil. Soils. 52, 539-546.
26.Shanker, A. K., Cervantes, C., Loza-Tavera, H. & Avudainayagam, S. (2005). Chromium toxicity in plants. Environ. Int. 31, 739-753.
27.Sharma, D. C., Shrama, C. P. & Tripathi, R. D. (2003). Phyto-toxic lesions of chromium in maize, Chemosphere, 51, 63-68.
28.Subrahamamyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica. 46 (3), 339-345.
29.Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmuller, R. & Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 167, 1009-1017.
30.Kumar, M., Yadav, V., Tuteja, N. & Johri, A. K. (2009). Antioxidant enzyme activities in maize plants colonized
 with Piriformospora indica. Microbiol. 155, 780-790.
31.Kari Dolatabadi, H., Mohammadi Gol Tapeh, E., Moeini, A. & Verma, A. (2012). Evaluation of the effect of concentration of auxin and fungi Piriformospora indica and Sebacina vermifera the peppermint (Mentha piperita) and thyme (Thymus vulgaris) in vitro. JMP. 2 (9), 13-22.
32.Karami, A. & Zarea, M. J. (2014). Physiological and nutritional response of inoculated alfalfa (Medicago sativa.
cv. hamedani) with the fungus Piriformospora indica and bacterium Azospirillum spp. under salt stress. J. Crop Prod. 7 (1), 109-129. [In Persian]
33.Zakir, A., Lahouti, M., Silk Chi, P. & Ijtihad, H. (2005). The effect of Cr3+ and Cr6+ accumulation on growth and chlorophyll content in parsley (Petroselinum crispum) J. Biol. 18, 101-109.
34.Bera, A. K., Kanta-Bokaria, A. K. & Bokaria, K. (1999). Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mungbean (Vigna radiate L. Wilczek), Environ. Ecol. 17, 958-961.
35.Behera, R. K. & Mishra, P. C. (2002). High Irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. J. Plant. Physiol. 159, 967-973.
36.Salimi Tamalla, N., Seraj, F., Pirdashti, H. & Yaghoubian, Y. (2014). The effect of seed biopriming by Piriformospora indica and Trichoderma virens on the growth, morphological and physiological parameters of mung bean (Vigna radiata L.) seedlings. Iran. J. Seed Sci. Res. 1 (26), 7-78. [In Persian]
37.Arun, K. S., Cervantes, C., Herminia, L. T. & Avudainayagamd, S. (2005). Chromium toxicity in plants. Environ. Int. 31, 739-753.
38.Castro, R. O., Trujillo, M. M., Bucio, J. L., Cervantes, C. & Dubrovsky, J. (2007). Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Sci. 172, 684-691.
39.Kumar, A., Sharma, S., Mishra, S. & Dames, J. F. (2015). Arbuscular mycorrhizal inoculation improves growth and antioxidative response of Jatropha curcas (L.) under Na2SO4 salt stress. Plant Bio System. 149, 260-269.
40.Feng, G., Zhang, F. S., Li, X., Tian, C. Y., Tang, C. & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza.12, 185-190.
41.Pirdashti, H., Khalondi, M., Amerian, M., Firoozabadi Brothers, M. & Gholami, A. (2017). Interaction of Piriformospora indica with Mentha piperita on the quantity and quality of essential oil and some physiological parameters under salinity stress. Plant Proc. Func. 6 (21), 161-184. [In Persian]
42.Azari, A., Modares Sanavi, S.A.M., Askari, H., Ghanati, F., Naji, A.M. & Alizade, B. (2012). Effect of salinity stress on morphological and physiological of canola and turnip (Brassica napus and B. rapa). Iran. J. Crop Sci. 14 (2), 121-135. [In Persian]
43.Bhardwaj, P., Chaturvedi, A. K. & Prasad, P. (2009). Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L. Nat. Sci. 7, 63-75.
44.Shi, S. M., Chen, K. & Gao, Y. (2016). Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings. Front. Microbiol. 7, 1030.
45.Olutoyosi, A., Ndakidemi, P., Snyman, R. & Odendaal, J. (2012). Assessment of metal concentrations, chlorophyll content and photosynthesis in Phragmites australis along the Lower Diep river, CapeTown, south Africa. Energy Environ. Sci. 2 (1), 128-139.
46.Shafi, M., Bakht, J., Hassan, M. J., Raziuddin, M. & Zhang, G. (2009). Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull. Environ. Contam. Toxicol.82, 772-776.
47.Sundarmoorthy, P., Sankarganesh, K., Selvaraj, M., Baskaran, L. & Chidambaram, A. A. (2015). Chromium induced changes in soybean (Glycine max L.) metabolism. World Scientific News. 10, 145-178.
48.Malar, S., Vikram, S. S., Favas, P. J. & Perumal, V. (2016). Lead heavy metal toxicity induced changes on growth
and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot. stud. 55 (1), 1-11.
49.Molassiotis, A., Satipoulos, T., Tanou, G., Diamantidis, G. & Therios, I. (2005). Boron-induced oxidative damage and antioxidant and uncleolytic responses in shoot tips culture of apple rootstock EM9 (Malus domestica Borkh.). Environ. Exp. Bot. 56, 54-62.