1.Kumar, N., Srivastava, G. C. & Dixit, K. (2008). Flower bud opening and senescence in roses (Rosa hybrid L.). Plant Growth Regulation, 55(2), 81-99.
2.Taiz, L., Zeiger, E. & Moller, I. M. (2015). Murphy A Plant Physiology and Development. Sinauer Associates. Incorporated. CT. USA.
3.Terfa, M. T., Solhaug, K. A., Gislerød, H. R., Olsen, J. E. & Torre, S. (2013). A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa hybrida but does not affect time to flower opening. Physiologia Plantarum, 148(1), 146-159.
4.Sabzalian, M. R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, M. R. & Schoefs, B. (2014). High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy for sustainable development, 34(4), 879-886.
5.Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O. & Li, T. )2018(. Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10(5), 052.
6.Massa, G. D., Kim, H. H., Wheeler, R. M. & Mitchell, C. A. (2008). Plant productivity in response to LED lighting. HortScience, 43, 1951-1955.
7.Oh, W., Runkel, E. S. & Warner, R.M. (2010). Timing and duration of supplemental lighting during the seedling stage influence quality and flowering in petunia and pansy. HortScience, 45, 1332-1337.
8.Terfa, M. T., Poudel, M. S., Roro, A. G., Gislerød, H. R., Olsen, J. E. & Torre, S. (2012). Light emitting diodes with a high proportion of blue light affects external and internal quality parameters of pot roses differently than the traditional
high pressure sodium lamp. In VII International Symposium on Light in Horticultural Systems, 956, 635-642.
9.Ha, S. T. T., In, B. C. & Lim, J. H. (2020). LED light improves postharvest quality and longevity of cut rose flowers' Lovely Lydia'. In III International Symposium on Germplasm of Ornamentals. 1291, 261-268.
10.Särkkä, L. E., Jokinen, K., Ottosen, C. O. & Kaukoranta, T. (2017). Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and
yield. Agricultural and food science,
26 (2), 102-110.
11.Stutte, G. W. (2009). Light-emitting diodes for manipulating the phytochrome apparatus. HortScience, 44, 231-234.
12.Lim, M. K., Lee, H. J. & Kim, W. S. (2017). Effects of ultraviolet A (UVA) + light emitting diode (LED) irradiation on the cut flower quality and vase life of the oriental Hybrid Lily ‘Siberia’ simulated exportation. Flower Research Journal, 25 (3), 118-123.
13.Heo, J. W., Chakrabarty, D. & Paek, K. Y. (2004). Longevity and quality of cut ‘Master’ carnation and ‘Red Sandra’ rose flowers as affected by red light. Plant Growth Regulation, 42(2), 169-174.
14.Evelyn, S., Farrell, A., Elibox, W., De Abreu, K. & Umaharan, P. )2020(. The impact of light on vase life in (Anthurium andraeanum Hort.) cut flowers. Postharvest Biology and Technology, 159, 110984.
15.Heo, J. W., Lee, C. W., Murthy, H. & Paek, K. Y. (2003). Influence of light quality and photoperiod on flowering of Cyclamen persicum Mill. cv. Dixie White. Plant Growth Regulation, 40, 7-10.
16.Hovi-Pekkanen, T. & Tahvonen, R. (2008). Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. Scientia Horticulturea, 116(2), 152-161.
17.Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology, 148, 350-382.
18.Yamasaki, S. & Dillenburg, L. R. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilleira de fisiologia vegetal, 11(2), 69-75.
19.Bradford, M. M. )1976(. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-25.
20.Genty, B., Briantais, J. M. & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and photochemical quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA), 990, 87-92.
21.Alsanius, B. W., Bergstrand, K. J., Hartmann, R., Gharaie, S., Wohanka, W., Dorais, M. & Rosberg, A. K. (2017). Ornamental flowers in new light: artificial lighting shapes the microbial phyllosphere community structure of greenhouse grown sunflowers (Helianthus annuus L.). Scientia Horticulture, 216, 234-247.
22.Appelgren, M. (2003). Effects of light quality on stem elongation of Pelargonium in vitro. Scientia Horticulturea, 45, 345-351.
23.Dougher, T. A. & Bugbee, B. G. )2004(. Long-term blue light effects on the histology of lettuce and soybean leaves and stems. Journal of the American Society for Horticultural Science, 129, 467-472.
24.Kumar, M., Singh, V. P., Arora, A. & Singh, N. (2014). The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence. Acta Physiologiae Plantarum, 36, 151-159.
25.Li, H., Xu, Z. & Tang, C. (2010). Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 103, 155-163.
26.Lokstein, H., Renger, G. & Götze, J. P. (2021). Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules, 26(11), 3378..
27.Neff, M. M. & Chory, J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome during Arabidopsis development. Plant physiology, 118, 27-35.
28.Wang, M., Xiao, J., Wei, H. & Jeong, B.R. (2020). Supplementary light source affects growth and development of carnation ‘Dreambyul’ cuttings. Agronomy, 10(8), p.1217.
29.Heo, J., Lee, C., Chakrabarty, D. & Paek, K. (2002). Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regulation, 38(3), 225-230.
30.Nishida, K. (1963). Studies on stomatal movement of crassulaceae plants in relation to the acid metabolism. Physiologia Plantarum, 16, 281-298.
31.Fukuda, N., Ishii, Y., Ezura, H. & Olsen, J. E. (2009). Effects of light quality under red and blue light emitting diodes on growth and expression of FBP28 in petunia. In VI International Symposium on Light in Horticulture, 907, 361-366.
32.Neales, T. F. (1970). Effect of ambient carbon dioxide concentration on the rate of transpiration of Agave americana in the dark. Nature, 228, 880-882.
33.Lopez, R. G. & Runkle, E. R. (2008). Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea impatiens and petunia. HortScience, 43, 2052-2059.
34.Talbott, L. D., Zhu, J., Hon, S. W. & Zeiger, E. (2002). Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum. Plant and cell physiology, 43, 639-646.
35.Fan, X., Zang, J., Xu, Z., Guo, X., Jiao, S., Liu, X. & Gao, Y. )2013). Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta physiologiae plantarum, 35(9), 2721-2726.
36.Hasan, M. M., Bashir, T., Ghosh, R., Lee, S. K. & Bae, H. (2017). An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules, 22, 1-12.
37.Arve, L. E., Terfa, M. T., Suthaparan, A., Poudel, M. S., Gislerød, H. R., Olsen J. E. & Torre, S. )2014(. Aerial environment and light quality during production affect postharvest transpiration of ornamentals. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), 1104, 197-204.
38.Sugawara, H., Shibuya, K., Yoshioka, T., Hashiba, T. & Satoh, S. (2002). Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? Journal of Experimental Botany, 53, 407-413.
39.Sood, Sh., Vyas, D. & Nagar, P. K. (2006). Physiological and biochemical studies during flower development in two rose species. Scientia Horticulturea, 108, 390-396.
40.Corbesier, L., Bernier, G. & P´erilleux, C. )2002(. C: N Ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant and Cell Physiology, 43, 684-688.