1.Lin, P. H. & Chao, Y. Y. (2021). Different drought-tolerant mechanisms in quinoa (Chenopodium quinoa Willd) and djulis (Chenopodium formosanum Koidz.) based on physiological analysis. Plants, 10, 2279-2292.
2.Hinojosa, L., González, J. A., Barrios-Masias, F. H., Fuentes, F. & Murphy, K. M. (2018). Quinoa abiotic stress responses: a review. Plants, 7, 106-117.
3.Reguera, M., Conesa, C. M., Gil-Gómez, A., Haros, C. M., Pérez-Casas, M. Á., Briones-Labarca, L., Bolaños, L., Bonilla, I., Álvarez, R. & Pinto K. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. Peer Journal, 19, 1-22.
4.Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L. & Martínez, E.A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90, 2541-2547.
5.Soares, A. M. S., Souza, T. F., Jacinto, T. & Machado, O. L. T. (2010). Effect of methyl jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. Brazilian Journal of Plant Physiology, 22, 151-158.
6.Tabarzad, A., Ayoubi, B., Riasat, M., Moucheshi, A. S. & Pessarakli, M. (2017). Perusing biochemical antioxidant enzymes as selection criteria under drought stress in wheat varieties. Journal of Plant Nutrition, 40, 2413-2420.
7.Hoseini, S. S., Cheniany, M., Lahouti, M. & Ganjeali, A. (2016). Evaluation of resistance to drought stress in seedlings of two lines of triticale (Triticosecale × Wittmack) with emphasis on some enzymatic and non-enzymatic antioxidants. Journal of Plant Biology, 30, 27-42. [In Persian]
8.Snider, J. L., Oosterhuis, D. M., Skulman, B. W. & Kawakami, E. M. (2009). Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 137, 125-138.
9.Rahimi, J., Rashidi, V., Shahbazi, H., Moghaddam-Vahed, M. & Khalilvand-Behrouzyar, E. (2021). Evaluation of activity of antioxidant enzymes and grain yield in barley (Hordeum vulgare L.) cultivars under salinity stress. Environmental Stresses in Crop Sciences, 14, 783-791. [In Persian]
10.Jabari, F., Ahmadi, A., Poustini, K. & Alizadeh, H. (2016). Relationship between some antioxidant enzymes activities and cell membrane and chlorophyll stability in drought-tolerant and succeptible wheat cultivars. Journal of Agricultural Science, 37, 307-316. [In Persian]
11.Espanani, S., Majidi, M. M., Alaei, H., Saeidi, G. & Farhadi, F. (2020). Physiological changes in flowering stage due to drought stress in F4 lines derived from inter-specific hybridization of safflower. Journal of Plant Process and Function, 9, 125-147. [In Persian]
12.Ahmadi, K. & Omidi, H. (2019). Evaluation of morphological properties, yield components and catalase enzyme in Lallemantia royleana Benth. populations under drought stress. J. Agric. Ecol. 2, 757-774. [In Persian]
13.Soleimani-Fard, A. &
Naseri, R. (2020). Evaluation of relationships between grain yield and agro-physiological traits of bread wheat genotypes under rainfed conditions.
Environmental Stresses in Crop Sciences, 13, 701-714. [In Persian]
14.Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Breusegem, F. V. & Noctor, G. (2010). Catalase function in plants: a focus on arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, 61, 4197-4220.
15.Pan, Y., Wu, L. J. & Yu, Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regulation, 49, 157-165.
16.Beauchamp, C. & Fridovich, M. (1971). Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
17.Mita, S., Murano, N., Akaike, M. & Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that is inducible by sugars. Plant Journal, 11, 841-851.
18.Irigoyen, J. J., Emerich, D. W. & Sanchez-Dias, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago Sativa) plants. Plant Physiology, 84, 55-60.
19.Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
20.Hiscox, J. D. & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57, 1332-1334.
21.Giannopolitis, C. N. and Ries, S. K. (1977). Superoxide dismutases I. occurrence in higher plants. Plant Physiology, 59, 309-314.
22.Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867-880.
23.Havir, E. A. & Mchale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 450-455.
24.Sarker, U. & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports, 8, 1-12.
25.Franco, A. C., Matsubara, S. & Orthen, B. (2007). Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical Savanna trees. Tree Physiol. 27: 717-725.
26.Thomas, C. E., Morehouse, L. A. & Aust, S. D. (1985). Ferritin and superoxide-dependent lipid peroxidation. Journal of Biological Chemistry, 260, 3275-3280.
27.Poli, Y., Nallamothu, V., Balakrishnan, D., Ramesh, P., Desiraju, S., Mangrauthia, S. K., Voleti, S. R. & Neelamraju, S. (2018). Increased catalase activity and maintenance of photosystem II distinguishes high-yield mutants from low-yield mutants of rice var. Nagina22 under low-phosphorus stress. Frontiers in Plant Science, 9, 1543-1556.
28.Sofo, A., Scopa, A., Nuzzaci, M. & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic gegulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 9, 13561-13578.
29.Bharti, K., Pandey, N., Shankhdhar, D., Srivastava, P. C. & Shankhdhar, S. C. (2014). Effect of different zinc levels on activity of superoxide dismutases and acid phosphatases and organic acid exudation on wheat genotypes. Physiology and Molecular Biology of Plants, 20, 41-48.
30.Bartwal, A., Mall, R., Lohani, P., Guru, S. K. & Arora, S. (2013). Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation, 32, 216-232.
31.Parihar, P., Singh, S., Singh, R., Singh, V. P. & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22, 4056-4075.
32.Cirillo, V., D’Amelia, V., Esposito, M., Amitrano, C., Carillo, P., Carputo, D. & Maggio, A. (2021). Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology, 10, 139-151.