Cultivation of garden thyme plant (Thymus vulgaris L.) in vitro and investigating the effects of ventilation, silica and sucrose concentration on its growth and development

Document Type : scientific research article

Authors

1 M.Sc. Graduate of Horticulture and Landscape, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Ph.D. Student of Soil Science, Faculty of Agriculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Corresponding Author, Associate Prof., Dept. of Horticulture and Landscape, Faculty of Agriculture, University of Zabol, Zabol, Iran.

4 Assistant Prof., Dept. of Horticulture and Landscape, Faculty of Agriculture, University of Zabol, Zabol, Iran.

5 Assistant Prof., Dept. of Agronomy and Plant Breeding, Institute of Agricultural Research, University of Zabol, Zabol, Iran

6 Ph.D. Graduate, Dept. of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Abstract

Background and objectives: The garden thyme plant (Thymus vulgaris L.) belongs to the mint family (Lamiaceae). Garden thyme is considered as a valuable, important and useful plant in the cosmetic and health, therapeutic and medical industries due to having a large amount of effective substances. The purpose of this study was to improve branch processing, produce quality seedlings and reduce the effects of intra-glass stresses such as high humidity, increasing Ethylene concentration in the micro-climate inside the glass and mechanical damage to the explant tissue. Also, limited studies have been done in relation to the in vitro propagation of this plant.

Materials and methods: To investigate the effects of ventilation, silica and sucrose concentration on the in vitro growth and development of garden thyme (T. vulgaris), a research was carried out under a factorial experiment based on a completely randomized design, where the first factor included ventilation at two different levels (with ventilation (0.4 micron head filters were used to carry out the ventilation treatment, which were installed in the lid of the planting containers) and without ventilation) The second factor included silica with four levels (0, 1.5, 3 and 6 mg/L), the third factor included sucrose with three levels (7.5, 15 and 30 g/L) and control (no ventilation). The culture medium used was Murashige and Skoog, which was supplemented with 1 mg/L of kinetin, 0.3 mg/L of gibberellic acid and 8 g/L of agar. The pH of the culture medium was adjusted to 5.8 before autoclaving. The explants used were single nodes of the stem, which were prepared from a growing mass. Traits include: number of branches, branch length, internode length, number of leaves, branch weight, branch dry weight, branch regeneration percentage, explant contamination percentage, root number, root length, root weight, root dry weight, root regeneration percentage, proline, antioxidant activity, plant pigments (chlorophyll, carotenoid, anthocyanin, flavonoid) and seedling survival percentage were measured and evaluated.

Results: The results of the effects of ventilation, silica and different concentrations of sucrose on the evaluated traits It showed that in the simple effects of root male weight, explant contamination percentage and seedling survival percentage in sucrose treatment and antioxidant trait in conditioning treatment and in double effects of root number, root regeneration percentage, root fresh weight, branch length , the number of stomata, flavonoid and chlorophyll b and in the triple effects of root dry weight, proline and chlorophyll a were significant at the 5% probability level. The results of variance analysis of the data showed that the treatments of ventilation, silica and sucrose concentration were not significant at the probability level of 5% in simple effects, but the double and triple effects of these factors had a significant effect on nitrogen (The treatment with 7.5 gr/L of sucrose and ventilation increased the percentage of nitrogen to 1.23).

Conclusion: The present research showed that the effects of ventilation, silica and sucrose concentration on the morphological, physiological and biochemical characteristics of garden thyme plant are different. The treatment of 15 gr/L of sucrose and 1.5 mg of silica along with no ventilation increased the growth parameters of garden thyme plant and branch length. Therefore, according to the obtained results, the use of silica can be considered economical compared to ventilation and it can be suggested as a combination to the culture solution to increase the yield and growth of T. vulgaris.

Keywords

Main Subjects


1.Mirzaei-Aghsaghali, A., Syadati, S. A. & Fathi, H. (2012). Some of thyme (Thymus vulgaris) properties in ruminant's nutrition. Annals of biological research, 3 (2), 1191-1195.
2.García-Gonzáles, R., Quiroz, K., Carrasco, B. & Caligari, P. (2010). Plant tissue culture: Current status, opportunities
and challenges. International journal of agriculture and natural resources, 37 (3), 5-30.
3.Azizi, P., Mahbod Sahebi, M. & Hanafi, M. (2016). Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology-Plant, 52, 226-232.
4.Dias, G. D. M. G., Rodrigues Soares, J. D., Pasqual, M., Lara Silva, R. A., Rodrigues, L. C. D. A., Pereira, F. J. & de Castro, E. M. (2014). Photosynthesis and leaf anatomy of'Anthurium'cv. rubi plantlets cultured'in vitro'under different silicon (Si) concentrations. Australian Journal of Crop Science, 8(8), 1160-1167.
5.Asmar, S. A., Rodrigues Soares, J. D., Lara Silva, R. A., Pasqual, M., Pio, L. A. S. & Mauro de Castro, E. (2015). Anatomical and structural changes in response to application of silicon (Si)'in vitro'during the acclimatization of banana cv.'Grand Naine'. Australian Journal of Crop Science, 9(12), 1236-1241.
6.Duan, X., Tang, M. & Wang, W. (2013). Effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under cold stress. Agricultural Biotechnology, 2(3), 18.
7.PAIVA, P. D. D. O., Pasqual, M. & Paiva, R. (1999). Efeito de concentrações de ágar e níveis de pH na propagação in vitro de crisântemo. Ceres, 46(264).
8.Smeekens, S. (2000). Sugar-induced signal transduction in plants. Annual review of plant biology, 51(1), 49-81.
9.Praveen, G., Vineet, K. & Yadav, S. K. (2011). Effect of sucrose on steviol glycoside biosynthesis pathway in Stevia rebaudiana. Asian Journal of Plant Sciences, 10(8), 401-407.
10.Fuentes, S. R., Calheiros, M. B., Manetti-Filho, J. & Vieira, L. G. (2000). The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant cell, tissue and organ culture, 60(1), 5-13.
11.Ramarosandratana, A., Harvengt, L., Bouvet, A., Calvayrac, R. & Pâques, M. (2001). Effects of carbohydrate source, polyethylene glycol and gellan gum concentration on embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos. In Vitro Cellular & Developmental Biology-Plant, 37(1), 29-34.
12.Caton, L. (2008). Application of Tissue Culture Propagation to Woody Plants. In Combined Proceedings International Plant Propagators’ Society, 58, 284.
13.Tombolato, A. F. C. & Costa, A. M. M. (1998). Micropropagation in the ornamental plants. Boletim Tecnico-Instituto Agronomico (Brazil), 174.
14.Ahmad, T., Abbasi, N. A., Hafiz, I. A. & Ali, A. (2007). Comparison of sucrose and sorbitol as main carbon energy sources in microprogation of peach rootstock GF-677. Pakistan Journal of Botany, 39(4), 1269.
15.Faria, R. T. D., Rodrigues, F. N., Oliveira, L. D. V. & Müller, C. (2004). In vitro Dendrobium nobile plant growth and rooting in different sucrose concentrations. Horticultura Brasileira, 22, 780-783.
16.Deberg, P. C. (1988). Control of in vitro plant propagation. Simpósio Internacional de Biotecnologia de Plantas, 1.
17.El Ansari, Z. N., El Mihyaoui, A., Boussaoudi, I., Benkaddour, R., Hamdoun, O., Tahiri, H. & Lamarti, A. (2019). Effect of macronutrients, cytokinins and auxins, on in vitro organogenesis of Thymus vulgaris L. American Journal of Plant Sciences, 10(09), 1482.
18.Hassankhah, A., Vahdati, K., Lotfi, M., Mirmasoumi, M., Preece, J. & Assareh, M. H. (2014). Effects of ventilation and sucrose concentrations on the growth and plantlet anatomy of micropropagated Persian walnut plants. International Journal of Horticultural Science and Technology, 1(2), 111-120.
19.Nguyen, Q. T., Xiao, Y. & Kozai, T. (2020). Photoautotrophic micropropagation. Plant factory, 333-346.
20.Sahebi, M., Hanafi, M. M. & Azizi, P. (2016). Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology-Plant, 52, 226-232.
21.Farrokhzad, Y., Babaei, A., Yadollahi, A., Kashkooli, A. B., Mokhtassi-Bidgoli, A. & Hessami, S. (2022). Informative title: Development of lighting intensity approach for shoot proliferation in Phalaenopsis amabilis through combination with silver nanoparticles. Scientia Horticulturae, 292, 110582.
22.Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
23.Mashayekhi, K. & Atashi, S. (2015). Guide to plant physiology tests (pre- and post-harvest examination of plants). Publications of Agricultural Education Research. 296-298. [In Persian]
24.Shimada, K., Fujikawa, K., Yahara, K. & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), 945-948.
25.Krizek, D. T., Kramer, G. F., Upadhyaya, A. & Mirecki, R. M. (1993). UV‐B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiologia Plantarum, 88(2), 350-358.
26.Lichtenthaler, H. K. & Buschmann, C. (2001). Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Current protocols in food analytical chemistry, 1(1), F4-2.
27.Page, A. L., Miller, R. H. & Keeny, D. R. (1982). Methods of soil and plant analysis. American Society of Agronomy, Madison.
28.Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
29.Ashworth, D. J. & Alloway, B. J. (2008). Influence of dissolved organic matter on the solubility of heavy metals in sewage‐sludge‐amended soils. Communications in soil science and plant analysis, 39(3-4), 538-550.
30.Morfeine, E. A. (2014). Effect of sucrose and glucose concentrations on micropropagation of Musa sp. cv. Grand Naine. Journal of Applied and Industrial Sciences, 2(2), 58-62.
31.Grace, S. C. (2005). Phenolics as antioxidants. Antioxidants and reactive oxygen species in plants, 141-168.
32.Cartaya, O. & Reynaldo, I. (2001). Flavonoides: Caracteristicas química y aplicaciones, Cultivos Tropicales. Instituto Nacional de Ciencias Agrícolas La Habana, Cuba. 22,5-14.
33.Fujiwara, K. & Kozai, T. (1995). Physical microenvironment and its effects. In: Aitken-Christie J, Kozai T, MAL S (eds) Automation and environmental control in plant tissue culture. Springer Publishers, Dordrecht. 319–369.
34.Jo, E. A., Tewari, R. K., Hahn, E. J. & Paek, K. Y. (2009). In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell, Tissue and Organ Culture (PCTOC), 96, 307-315.
35.Lim, M. Y., Lee, E. J., Jana, S., Sivanesan, I. & Jeong, B. R. (2012). Effect of potassium silicate on growth and leaf epidermal characteristics of begonia and pansy grown in vitro. Horticultural Science & Technology, 30(5), 579-585.
36.Braga, F. T., Nunes, C. F., Favero, A. C., Pasqual, M., Carvalho, J. G. D. & Castro, E. M. D. (2009). Anatomical characteristics of the strawberry seedlings micropropagated using different sources of silicon. Pesquisa Agropecuária Brasileira, 44, 128-132.
37.Calvete, E. O., Kämpf, A. N. & Suzin, M. (2002). Concentração de sacarose no enraizamento in vitro de morangueiro. Horticultura Brasileira, 20, 186-191.
38.Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stoláriková, M. & Lux, A. (2012). Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 110(2), 433-443.
39.Mohggeg, P., Shirvani, M. & Ghasemi, S. (2009). Effect of silicon application on growth and produce cucumber, two cultivar in hydroponic system. Journal of Science and techniques of greenhouse culture, 1(1), 39-35. [In Persian]
40.Al-Kaby, A. M. S. (2004). The effect of some antibiotics and fungicides on the growth of embryogenic callus of
date palm Phoenix dactylifera L. Basra Journal of Date Palm Research, 3(1/2), 97-110.
41.Fathi Rezaei, P. & Rakee, E. (2016). Investigation of sucrose effect on tropane alkaloid production and several biochemical parameters of Datura under in vitro culture condition. Molecular and Cellular Researches. 30(4), 375-386.
[In Persian]
42.Zarei, M., Garoosi, G. H., Nezami, E., Hosseini, R. & Ahmadi, J. (2013). The Effect of Medium, Carbon Source, Light Spectrum and Style Treatment of Auxin on Shoot and Root Regeneration of Gisela 6 Root Stock. Cell and Tissue Journal. 4(2), 169-185. [In Persian]
43.Baque, M. A., Shin, Y. K., Elshmari, T., Lee, E. J. & Paek, K. Y. (2011). Effect of light quality, sucrose and coconut water concentration on the microporpagation of Calanthe hybrids ('Bukduseong' × 'Hyesung' and 'Chunkwang' × 'Hyesung'). Australian Journal of Crop Science, 5(10), 1247-1254.
44.Sivanesan, I. & Jeong, B. R. (2014). Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. The Scientific World Journal, 15, 25-37.
45.Islam, M. M., Ahmed, M. & Mahaldar, D. (2005). In vitro callus induction and plant regeneration in seed explants of rice (Oryza sativa L.). Research Journal of Agriculture and Biological Sciences, 1(1), 72-75.
46.Mathe, C., Mosolygó, Á., Surányi, G., Beke, A., Demeter, Z., Tóth, V.R., Beyer, D., Mészáros, I. & Márta, M. (2012). Genotype and explanttype dependent morphogenesis and silicon response of common reed (Phragmites australis) tissue cultures. Aquatic botany, 97(1), 57-63.
47.Shim, S. W., Hahn, E. J. & Paek, K. Y. (2003). In vitro and ex vitro growth of grapevine rootstock5BB'as influenced by number of air exchanges and the presence or absence of sucrose in culture media. Plant Cell, Tissue and Organ Culture, 75, 57-62.
48.Iarema, L., da Cruz, A. C. F., Saldanha, C. W., Dias, L. L. C., Vieira, R. F., de Oliveira, E. J. & Otoni, W. C. (2012). Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell, Tissue and Organ Culture, 110, 227-238.
49.Al-Khalifah, N. S. & Shanavaskhan, A. E. (2012). Micropropagation of date palms. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB) and Association of Agricultural Research Institutions in the Near East and North Africa (AARINENA), 54.
50.Bienert, G. P., Schüssler, M. D. & Jahn, T. P. (2008). Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends in biochemical sciences, 33(1), 20-26.
51.Zobayed, S. A., Armstrong, J. & Armstrong, W. (2001). Leaf anatomy of in vitro tobacco and cauliflower plantlets as affected by different types of ventilation. Plant Science, 161(3), 537-548.
52.Zobayed, S. M. A., Armstrong, J. & Armstrong, W. (2001). Micropropagation of potato: evaluation of closed, diffusive and forced ventilation on growth and tuberization. Annals of Botany, 87(1), 53-59.
53.Afreen, F. (2005). Physiological and anatomical characteristics of in vitro photoautotrophic plants. In Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system (pp. 61-90). Springer Netherlands.
54.Zobayed, S. M. A., Afreen-Zobayed, F., Kubota, C. & Kozai, T. (2000). Mass propagation of Eucalyptus camaldulensis in a scaled-up vessel under in vitro photoautotrophic condition. Annals of Botany, 85(5), 587-592.
55.Posada, L. (2016). Embriogénesis somática y enraizamiento in vitro fotoautotrófico en papaya (Carica papaya L.) cultivar'Maradol Roja' (Doctoral dissertation, Ph. D. Thesis, Santa Clara, Cuba).
56.Zahed Zadeh, F., Mahna, N., Kakavand, F., Zare Nahandi, F. & Panahande, J. (2014). Effect of concentration and source of carbohydrate on in vitro production of anthocyanin in apple. Agricultural Biotechnology Journal. 5(4), 37-48. [In Persian]
57.Kauss, H., Seehaus, K., Franke, R., Gilbert, S., Dietrich, R. A. & Kröger, N. (2003). Silica deposition by a strongly cationic proline‐rich protein from systemically resistant cucumber plants. The plant journal, 33(1), 87-95.
58.Xiao, Y., Niu, G. & Kozai, T. (2011). Development and application of photoautotrophic micropropagation plant system. Plant Cell, Tissue and Organ Culture (PCTOC), 105, 149-158.
59.Arigita, L., Cañal, M. J., Tamés, R. S. & González, A. (2010). CO2-enriched microenvironment affects sucrose and macronutrients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson). In Vitro Cellular & Developmental Biology-Plant, 46, 312-322.
60.Batista, D. S., Dias, L. L. C., Rêgo, M. M. D., Saldanha, C. W. & Otoni, W. C. (2016). Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Ciência Rural, 47, e20150245.
61.Zahara, M., Datta, A. & Boonkorkaew, P. (2016). Effects of sucrose, carrot juice and culture media on growth and net CO2 exchange rate in Phalaenopsis hybrid ‘Pink’. Scientia horticulturae, 205, 17-24.
62.Mohamed, M. H. & Alsadon, A. A. (2010). Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Scientia Horticulturae, 123(3), 295-300.
63.Fanourakis, D., Bouranis, D., Giday, H., Carvalho, D. R., Nejad, A. R. & Ottosen, C. O. (2016). Improving stomatal functioning at elevated growth air humidity: a review. Journal of Plant Physiology, 207, 51-60.
64.Behtash, F., Tabatabaii, S. J., Malakouty, M. J., Sorour-Aldin, M. H. & Ustan, S. (2009). Effect of cadmium and silicon on growth and some physiological aspect of red beet. Journal of plant physiology and breeding.
2(1), 53-67. [In Persian]
65.Larcher, W. (1995). Physiological Plant Ecology, pp. 424-426. Springer Verlag, Berlin, Heidelberg.
66.Osório, M. L., Gonçalves, S., Osório, J. & Romano, A. (2005). Effects of CO2 concentration on acclimatization and physiological responses of two cultivars of carob tree. Biologia plantarum, 49, 161-167.
67.Faisal, M., Siddique, I. & Anis, M. (2006). An efficient plant regeneration system for Mucuna pruriens L. (DC.) using cotyledonary node explants. In vitro Cellular & Developmental Biology-Plant, 42, 59-64.
68.Lian, M. L., Murthy, H. N. & Paek, K. Y. (2002). Culture method and photosynthetic photon flux affect photosynthesis, growth and survival of Limonium ‘Misty Blue’in vitro. Scientia Horticulturae, 95(3), 239-249.
69.Dehpour Joybari, A. A., Soltani, S., Bishehkolaei, R., Ghasemi, K. & Rajabzadeh, Z. (2021). Plant regeneration from blackberry lateral bud culture under a set of hormone, silicic acid, sucrose and activated charcoal. Developmental Biology, 13(3), 55-66. [In Persian]
70.Avestan, S. & Naseri, L. (2015). Effects of nano silicon (SiO2) application on in vitro proliferation of Gala apple cultivar. Iranian Journal of Horticultural Science, 46(4), 669-675. [In Persian]
71.Hassan Poor, H., Bernard, F. & Shaker, H. (2007). Optimizing callus culture in Zataria multiflora boiss for rosmarinic acid production. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 15(1), 1-9. [In Persian]
72.Pruski, K., Astatkie, T., Mirza, M. & Nowak, J. (2002). Photoautotrophic micropropagation of Russet Burbank potato. Plant cell, tissue and organ culture, 69, 197-200.
73.Richardson, A. D., Duigan, S. P. & Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New phytologist, 153(1), 185-194.
74.Ceylan, A., Bayram, E. & Özay, N. (1994). The effects of N-fertilizer on the yield and quality of Thymus vulgaris L. in ecological conditions of Bornova-İzmir.
75.Falah, A. & Elyasi, H. (2020). Effect of different rate of silicate fertilizer on the growth and yield of Tarom Hashemi
rice variety. Agricultural Knowledge, 3(7), 28-40. [In Persian]