The Effect of Colchicine Treatment and In vitro Polyploidy Induction on Quantity and Quality of the Phenolic Compounds of Catharanthus roseus (Linn.) G. Don

Document Type : scientific research article

Authors

1 Ph.D. Secondary Metabolite Production in Biological System Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), West Azarbaijan Branch, Urmia, Iran

2 Corresponding Author, Assistant Prof., Secondary Metabolite Production in Biological System Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), West Azarbaijan Branch, Urmia, Iran.

3 Ph.D. Graduate, Dept. of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran

Abstract

ABSTRACT

Background and Objectives: Catharanthus roseus (Linn.) G. Don) is an important medicinal plant with a wide distribution that has attracted increasing attention due to its high pharmacological value and different biological activities such as antioxidant, antibacterial, antifungal, anti-diabetic, and anti-cancer. Besides alkaloids, this plant produces a wide range of phenolic compounds. Due to the effects of polyploidy on the growth and development of plants, chromosome doubling has been used as a method in plant breeding to increase the valuable desired compound levels and improve morphological characteristics, and these changes depend on the plant species and cultivar. Hence, the aim of this paper was to explore the possibility of using polyploidy as a breeding method to compare the growth traits also investigate total phenolic and flavonoid content as well as, polyphenolic compounds accumulation between tetraploid and diploid plants in 'Red Really' and' Polka Dot' cultivars.

Materials and methods: In this study, in vitro apical buds of seedlings of 'Red Really' and ' Polka Dot' cultivars, were treated by various concentrations of colchicine (0, 0/05, 0/1, 0/2 and 0/5 %) at three exposure time (24, 48 and 72 h). To distinguish the ploidy level of seedlings flow cytometry and chromosome counting were performed. After establishing tetraploid seedlings, total phenol and flavonoid content was measured. Extraction and analysis of phenolic compounds conducted using High-performance liquid chromatography (HPLC) analysis.

Results: In our experiment, the concentration and exposure time of colchicine and their interaction effected the tetraploidy percentage. karyotype analysis suggested that the number of chromosomes in the diploids species was 2n=2x=18 and tetraploids plants contained 2n=4x=36. The maximum tetraploidy frequency was observed at the 0.2% colchicine for 48h in 'Red Really' and 0.1% colchicine for 48h in ' Polka Dot'. The polyploid seedlings produced, visible changes in total phenol and flavonoid content compared to diploids. Also, gallic acid, caffeic acid, chlorogenic acid, rutin, coumaric acid, rosmarinic acid, quercetin, cinnamic acid and apigenin content increased compared to diploid plants.

Conclusions: Despite the high economic and therapeutic value of C. roseus, there has been scarce investigation of polyploidy induction on various cultivars of this plant, although there are previous protocols, but they may not be effective on all cultivars. According to our results, polyploidization caused a significant increase in polyphenolic compound contents, especially cinnamic acid, apigenin, and quercetin in "Polka Dot". On the other hand, induced tetraploids of both cultivars had a significantly higher content of total phenol and flavonoid. Also, our results showed that polyploidization allows the creation of plant forms containing greater amounts of biologically active compounds than their diploid counterparts and resulting polyploid lines have the potential to be used in breeding programs to develop C. roseus cultivars.

Keywords

Main Subjects


  1. H. (2013). The complete plastid genome sequence of madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification and phylogenetic implications in asterids. Plos One, 8 (6), 1-11.

2.Prabha, N., & Bhuvana, J. (2023). Phyto-chemical analysis of Catharanthus roseus L. by gas chromatography- mass spectrometery studies. European Chemical Bulletin, 12 (S3), 823-831. https://doi. org/10.31838/ecb/2023.12.s3.094.

3.Lahare, R. P., Yadav, H., Dashahre, A. K., & Bisen, Y. K. (2020). An updated review on phytochemical and pharmacological properties of Catharanthus rosea. Saudi Journal of Medical and Pharmaceutical Sciences; 6(12), 759-766. https://doi.org/10.36348/ sjmps.2020.v06i12.007.

4.Vega-Avila, E., Cano-Velasco, J. L., Alarcon-Aguilar, F. J., Fajardo Ortíz, M. D. C., Almanza-Pérez, J. C., & Román-Ramos, R. (2012). Hypoglycemic activity of aqueous extracts from Catharanthus roseus. Evidence-Based Complementary and Alternative Medicine, 2012, 934258. https://doi.org/10.1155/ 2012/934258.

5.Espejel-Nava, J. A., Vega-Avila, E., Alarcon-Aguilar, F., Contreras-Ramos, A., Díaz-Rosas, G., Trejo-Aguilar, G., & Ortega-Camarillo, C. (2018). A phenolic fraction from Catharanthus roseus L. stems decreases glycemia and stimulates insulin secretion. Evidence-Based Complementary and Alternative Medicine, 2018, 7191035. https://doi.org/10.1155/ 2018/7191035.

6.Kumar, K., Debnath, P., Singh, S., & Kumar, N. (2023). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses, 3(3), 570-585. https://doi.org/10.3390/stresses3030040.

7.Yu, B., Pan, Y., Liu, Y., Chen, Q., Guo, X., & Tang, Z. (2021). A comprehensive analysis of transcriptome and phenolic compound profiles suggests the role of flavonoids in cotyledon greening in Catharanthus roseus seedling. Plant Physiology and Biochemistry, 167, 185-197, https://doi.org/ 10.1016/ j.plaphy.2021. 07.028.

8.Liu, J., Liu, Y., Wang, Y., Zhang, Zh., Zu, Y., Efferth, T., & Tang, ZH. (2016). The combined effects of ethylene and MeJA on metabolic profiling of phenolic compounds in Catharanthus roseus revealed by metabolomics analysis. Frontiers in Physiology, 7, 217. https:// doi.org/10.3389/fphys.2016.00217.

9.Gawenda-Kempczyńska, D., Olech, M. Balcerek, M., Nowak, R., Załuski, T., & Załuski, D. (2022). Phenolic acids as chemotaxonomic markers able to differentiate the Euphrasia species. Phytochemistry, 203, 113342, https://doi. org/10.1016/j.phytochem.2022.113342.

10.Qaderi, M. M., Martel, A. B., & Strugnell, C. A. (2023). Environmental factors regulate plant secondary metabolites. Plants, 12, 447. https://doi. org/10.3390/plants12030447.

11.Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes (Basel), 14(1), 174. https://doi.org/10.3390/genes14010174.

12.Omidbeaigi, R. (2013). Production and processing of medicinal plants. Vol. I. Behnashr Press. Mashhad, Iran. 347p. [In Persian]

13.Cui, L., Liu, Z., Yin, Y., Zou, Y., Faizan, M., Alam, P., & Yu, F. (2023). Research progress of chromosome doubling and 2n gametes of ornamental plants. Horticulturae, 9, 752. https:// doi.org/10.3390/horticulturae9070752.

14.Nett, R. S., & Sattely, E. S. (2021). Total biosynthesis of the tubulin- binding alkaloid colchicine. Journal of the American Chemical Society, 143(46), 19454-19465. https://doi.org/ 10.1021/jacs.1c08659.

15.Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., Cabi, E., & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555. https:// doi.org/10.3389/fpls.2023.1132555.

16.Murashige, T., & Skoog, F. (1962). A revised medium for the rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.

17.Farjaminezhad, R., Asghari-Zakaria, R., Zare, N., & Ahmadpoor, R. (2011). Karytoype study of three populations of Papaver bracteatum Lind. 7th National Biotechnology Congress of I.R. Iran. Tehran, Iran.

18.Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55. https://doi.org/ 10.5344/ajev.1977.28.1.49.

19.Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45, 349-357. https://doi.org/10.1016/ j.postharvbio.2007.03.007.

20.Fattahi, M., Nazeri, V., Torras-Claveria, L., Sefidkon, F., Cusido, R. M., Zamani, Z., & Palazon, J. (2013). A new biotechnological source of rosmarinic acid and surface flavonoids: hairy root cultures of Dracocephalum kotschyi Boiss. Industrial Crops and Products, 50, 256-263. https://doi.org/10.1016/ j.indcrop.2013.07.029.

21.Sarathum, S., Hegele, M., Tantiviwat, S., & Nanakorn, M. (2010). Effect of concentration and duration of colchicine treatment on polyploidy induction in Dendrobium scabrilingue L. European Journal of Horticultural Science, 75, 123-7.

22.Jala, A. (2014). Colchicine and duration time on survival rate and micropropagation of Dionaea muscipula Ellis. African Journal of Plant Science, 8, 291-7. https://doi.org/10.5897/ AJPS2014.1177.

23.Rao, S., Kang, X., Li, J., & Chen, J. (2019). Induction, identification and characterization of tetraploidy in Lycium ruthenicum. Breeding Science. 69(1), 160-168. https://doi.org/10. 1270/jsbbs.18144.

24.Wang, F., Zhuo, X., Arslan, M., Ercisli, S., Chen, J., Liu, Z., Lan, S., & Peng, D. (2023). In Vitro induction of polyploidy by colchicine in the protocorm of the Orchid Dendrobium wardianum Warner. HortScience, 58(11), 1368-1375. https:// doi.org/10.21273/HORTSCI17355-23.

25.Samatadze, T. E., Yurkevich, O. Y., Khazieva, F. M., Basalaeva, I. V., Konyaeva, E. A., Burova, A. E., Zoshchuk, S. A., Morozov, A. I., Amosova, A. V., & Muravenko, O. V. (2022). Agro-morphological and cytogenetic characterization of colchicine- induced tetraploid plants of Polemonium caeruleum L. (Polemoniaceae). Plants, 11(19), 2585. https://doi.org/10.3390/ plants11192585.

26.Manzoor, A., Ahmad, T., Naveed, M. S., Rehman, A. Ur., Bashir, M. A., Ahmad, R., & Akhtar, N. (2023). Assessment of biological damage and toxic potency of colchicine in gladiolus (Gladiolus grandiflorus) plants. Agricultural Sciences Journal, 5 (2), 72-92. https://doi.org/10.56520/asj.v5i2.259.

27.Wu, J., Zhou, Q., &Sang, Y. (2023). In vitro induction of tetraploidy and its effects on phenotypic variations in Populus hopeiensis. BMC Plant Biology, 23, 557. https://doi.org/10.1186/ s12870-023-04578-0.

28.Vilcherrez-Atoche, J. A., Silva, J. C., Clarindo, W. R., Mondin, M., & Cardoso, J. C. (2023). In vitro polyploidization of Brassolaeliocattleya Hybrid Orchid. Plants (Basel), 12(2), 281. https://doi.org/10.3390/plants12020281.

29.Hemadesh, I., Shahriari, F., & Farsi, M. (2020). Evaluation of tetraploid induction in forage sorghum cultivar “Omid-Bakhsh” using colchicine treatment. DYSONA - Applied Science, 1(1), 1-10. https://doi.org/10.30493/ das.2020.103715.

30.Eng, W. H., & Ho, W. S. (2019). Polyploidization using colchicine in horticultural plants: a review. Scientia Horticulturae, 246, 604-617. https:// doi.org/10.1016/j.scienta.2018.11.010.

31.Zahedi, A. A., Hosseini, B., Fattahi, M., Dehghan, E., parastar, H., & Madani, H. (2014). Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. Botanical Studies, 55, 22. https://doi.org/10.1186/1999-3110-55-22.

32.Ascough, G. D. (2008). Micropropagation and In vitro manipulation of Watsonia. Ph.D. Thesis, University of KwaZulu-Natal, Piertermartzburg. 189 p.

33.Nilanthi, D., Chen, X. L., Zhao, F., Yang, Y., & Wu, H. (2009). Induction of tetraploids from petiole explants through colchicine treatments in Echinaceae purpurea L. Journal of Biomedicine and Biotechnology, 34, 1-7. https://doi.org/ 10.1155/2009/343485.

34.Lavania, U. C., & Srivastava, S. (1988). Ploidy dependence of chromosomal variation in callus cultures of Hyoscyamus muticus L. Protoplasma, 145, 55-8.

35.Kong, D., Li, Y., Bai, M., Deng, Y., Liang, G., & Wu, H. (2017) A comparative study of the dynamic accumulation of polyphenol components and the changes in their antioxidant activities in diploid and tetraploid Lonicera japonica. Plant Physiology and Biochemistry, 112, 87-96. https:// doi.org/10.1016/j.plaphy.2016.12.027.

36.Griesbach, R. J., & Kamo, K. K. (1996). The effect of induced polyploidy on the flavonols of Petunia ‘Mitchell’. Phytochemistry, 42, 361-363.

37.Bagheri, M., & Mansour, H. (2015). Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L. Applied Biochemistry and Biotechnology, 175, 2366-2375. https:// doi.org/10.1007/s12010-014-1435-8.

38.Tossi, V. E., Martínez Tosar, L. J., Laino, L. E., Iannicelli, J., Regalado, J. J., Escandón, A. S., Baroli, I., Causin, H. F., & Pitta-Álvarez, S. I. (2022). Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Frontiers in Plant Science, 13. https://doi.org/ 10.3389/fpls.2022.869423.

39.Gaynor, M. L., Lim-Hing, S., & Mason, Ch. M. (2020). Impact of genome duplication on secondary metabolite composition in non-cultivated species: a systematic meta-analysis. - Annals of Botany, 126, 363-376. https://doi.org/ 10.1093/aob/mcaa107.

40.Buggs, R. J. A., Soltis, P. S., & Soltis, D. E. (2009). Does hybridization between divergent progenitors drive whole-genome duplication?. Molecular Ecology, 18(16), 3334-3339. https://doi. org/10.1111/j.1365-294X.2009.04285.x.

41.Zagoskina, N. V., Zubova, M. Y., Nechaeva, T. L., Kazantseva, V. V., Goncharuk, E. A., Katanskaya, V. M., Baranova, E. N., & Aksenova, M. A. (2023). Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications (Review). International Journal of Molecular Sciences, 24(18), 13874. https://doi. org/10.3390/ijms241813874.

42.Barber, H. N. (1970). Hybridization and the evolution of plants. Taxon, 19, 154-160. https://doi.org/10.2307/ 1217947.

43.Dhooghe, E., Van Laere, K., Eeckhaut, T., Leus, V., & Van Huylenbroeck, J. (2011). Mitotic chromosome doubling of plant tissues In vitro. Plant Cell, Tissue and Organ Culture, 104, 359-373. https:// doi.org/ 10.1007/ s11240-010-9786-5.

44.Ruiz, M., Oustric, J., Santini, J., & Morillon, R. (2020). Synthetic polyploidy in grafted crops. Frontiers in Plant Science, 11, 540894. https://doi.org/10. 3389/fpls.2020.540894.

45.Chen, Z. J., & Ni, Z. F. (2006). Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays, 28, 240e252. https://doi.org/10.1002/bies.20374.

46.Zhou, Y. Y., Kang, L., Liao, S. Y., Pan, Q., Ge, X., & Li, Z. Y. (2015). Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese woad (Isatis indigotica Fort.). Plos One, 10, e0116392. https://doi. org/10.1371/journal.pone.0116392.

47.Wang, H., Li, Y., Wang, S., Kong, D., Sahu, S. K., Bai, M., Li, H., Li, L., Xu, Y., Liang, H., Liu, H., & Wu, H. (2020). Comparative transcriptomic analyses of chlorogenic acid and luteolosides biosynthesis pathways at different flowering stages of diploid and tetraploid Lonicera japonica. Peer J. 8, e8690. https://doi.org/10.7717/peerj.8690.