Document Type : scientific research article
Authors
1 Ph.D. Secondary Metabolite Production in Biological System Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), West Azarbaijan Branch, Urmia, Iran
2 Corresponding Author, Assistant Prof., Secondary Metabolite Production in Biological System Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), West Azarbaijan Branch, Urmia, Iran.
3 Ph.D. Graduate, Dept. of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
Abstract
Keywords
Main Subjects
2.Prabha, N., & Bhuvana, J. (2023). Phyto-chemical analysis of Catharanthus roseus L. by gas chromatography- mass spectrometery studies. European Chemical Bulletin, 12 (S3), 823-831. https://doi. org/10.31838/ecb/2023.12.s3.094.
3.Lahare, R. P., Yadav, H., Dashahre, A. K., & Bisen, Y. K. (2020). An updated review on phytochemical and pharmacological properties of Catharanthus rosea. Saudi Journal of Medical and Pharmaceutical Sciences; 6(12), 759-766. https://doi.org/10.36348/ sjmps.2020.v06i12.007.
4.Vega-Avila, E., Cano-Velasco, J. L., Alarcon-Aguilar, F. J., Fajardo Ortíz, M. D. C., Almanza-Pérez, J. C., & Román-Ramos, R. (2012). Hypoglycemic activity of aqueous extracts from Catharanthus roseus. Evidence-Based Complementary and Alternative Medicine, 2012, 934258. https://doi.org/10.1155/ 2012/934258.
5.Espejel-Nava, J. A., Vega-Avila, E., Alarcon-Aguilar, F., Contreras-Ramos, A., Díaz-Rosas, G., Trejo-Aguilar, G., & Ortega-Camarillo, C. (2018). A phenolic fraction from Catharanthus roseus L. stems decreases glycemia and stimulates insulin secretion. Evidence-Based Complementary and Alternative Medicine, 2018, 7191035. https://doi.org/10.1155/ 2018/7191035.
6.Kumar, K., Debnath, P., Singh, S., & Kumar, N. (2023). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses, 3(3), 570-585. https://doi.org/10.3390/stresses3030040.
7.Yu, B., Pan, Y., Liu, Y., Chen, Q., Guo, X., & Tang, Z. (2021). A comprehensive analysis of transcriptome and phenolic compound profiles suggests the role of flavonoids in cotyledon greening in Catharanthus roseus seedling. Plant Physiology and Biochemistry, 167, 185-197, https://doi.org/ 10.1016/ j.plaphy.2021. 07.028.
8.Liu, J., Liu, Y., Wang, Y., Zhang, Zh., Zu, Y., Efferth, T., & Tang, ZH. (2016). The combined effects of ethylene and MeJA on metabolic profiling of phenolic compounds in Catharanthus roseus revealed by metabolomics analysis. Frontiers in Physiology, 7, 217. https:// doi.org/10.3389/fphys.2016.00217.
9.Gawenda-Kempczyńska, D., Olech, M. Balcerek, M., Nowak, R., Załuski, T., & Załuski, D. (2022). Phenolic acids as chemotaxonomic markers able to differentiate the Euphrasia species. Phytochemistry, 203, 113342, https://doi. org/10.1016/j.phytochem.2022.113342.
10.Qaderi, M. M., Martel, A. B., & Strugnell, C. A. (2023). Environmental factors regulate plant secondary metabolites. Plants, 12, 447. https://doi. org/10.3390/plants12030447.
11.Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes (Basel), 14(1), 174. https://doi.org/10.3390/genes14010174.
12.Omidbeaigi, R. (2013). Production and processing of medicinal plants. Vol. I. Behnashr Press. Mashhad, Iran. 347p. [In Persian]
13.Cui, L., Liu, Z., Yin, Y., Zou, Y., Faizan, M., Alam, P., & Yu, F. (2023). Research progress of chromosome doubling and 2n gametes of ornamental plants. Horticulturae, 9, 752. https:// doi.org/10.3390/horticulturae9070752.
14.Nett, R. S., & Sattely, E. S. (2021). Total biosynthesis of the tubulin- binding alkaloid colchicine. Journal of the American Chemical Society, 143(46), 19454-19465. https://doi.org/ 10.1021/jacs.1c08659.
15.Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., Cabi, E., & Kaya, Y. (2023). Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555. https:// doi.org/10.3389/fpls.2023.1132555.
16.Murashige, T., & Skoog, F. (1962). A revised medium for the rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
17.Farjaminezhad, R., Asghari-Zakaria, R., Zare, N., & Ahmadpoor, R. (2011). Karytoype study of three populations of Papaver bracteatum Lind. 7th National Biotechnology Congress of I.R. Iran. Tehran, Iran.
18.Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55. https://doi.org/ 10.5344/ajev.1977.28.1.49.
19.Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45, 349-357. https://doi.org/10.1016/ j.postharvbio.2007.03.007.
20.Fattahi, M., Nazeri, V., Torras-Claveria, L., Sefidkon, F., Cusido, R. M., Zamani, Z., & Palazon, J. (2013). A new biotechnological source of rosmarinic acid and surface flavonoids: hairy root cultures of Dracocephalum kotschyi Boiss. Industrial Crops and Products, 50, 256-263. https://doi.org/10.1016/ j.indcrop.2013.07.029.
21.Sarathum, S., Hegele, M., Tantiviwat, S., & Nanakorn, M. (2010). Effect of concentration and duration of colchicine treatment on polyploidy induction in Dendrobium scabrilingue L. European Journal of Horticultural Science, 75, 123-7.
22.Jala, A. (2014). Colchicine and duration time on survival rate and micropropagation of Dionaea muscipula Ellis. African Journal of Plant Science, 8, 291-7. https://doi.org/10.5897/ AJPS2014.1177.
23.Rao, S., Kang, X., Li, J., & Chen, J. (2019). Induction, identification and characterization of tetraploidy in Lycium ruthenicum. Breeding Science. 69(1), 160-168. https://doi.org/10. 1270/jsbbs.18144.
24.Wang, F., Zhuo, X., Arslan, M., Ercisli, S., Chen, J., Liu, Z., Lan, S., & Peng, D. (2023). In Vitro induction of polyploidy by colchicine in the protocorm of the Orchid Dendrobium wardianum Warner. HortScience, 58(11), 1368-1375. https:// doi.org/10.21273/HORTSCI17355-23.
25.Samatadze, T. E., Yurkevich, O. Y., Khazieva, F. M., Basalaeva, I. V., Konyaeva, E. A., Burova, A. E., Zoshchuk, S. A., Morozov, A. I., Amosova, A. V., & Muravenko, O. V. (2022). Agro-morphological and cytogenetic characterization of colchicine- induced tetraploid plants of Polemonium caeruleum L. (Polemoniaceae). Plants, 11(19), 2585. https://doi.org/10.3390/ plants11192585.
26.Manzoor, A., Ahmad, T., Naveed, M. S., Rehman, A. Ur., Bashir, M. A., Ahmad, R., & Akhtar, N. (2023). Assessment of biological damage and toxic potency of colchicine in gladiolus (Gladiolus grandiflorus) plants. Agricultural Sciences Journal, 5 (2), 72-92. https://doi.org/10.56520/asj.v5i2.259.
27.Wu, J., Zhou, Q., &Sang, Y. (2023). In vitro induction of tetraploidy and its effects on phenotypic variations in Populus hopeiensis. BMC Plant Biology, 23, 557. https://doi.org/10.1186/ s12870-023-04578-0.
28.Vilcherrez-Atoche, J. A., Silva, J. C., Clarindo, W. R., Mondin, M., & Cardoso, J. C. (2023). In vitro polyploidization of Brassolaeliocattleya Hybrid Orchid. Plants (Basel), 12(2), 281. https://doi.org/10.3390/plants12020281.
29.Hemadesh, I., Shahriari, F., & Farsi, M. (2020). Evaluation of tetraploid induction in forage sorghum cultivar “Omid-Bakhsh” using colchicine treatment. DYSONA - Applied Science, 1(1), 1-10. https://doi.org/10.30493/ das.2020.103715.
30.Eng, W. H., & Ho, W. S. (2019). Polyploidization using colchicine in horticultural plants: a review. Scientia Horticulturae, 246, 604-617. https:// doi.org/10.1016/j.scienta.2018.11.010.
31.Zahedi, A. A., Hosseini, B., Fattahi, M., Dehghan, E., parastar, H., & Madani, H. (2014). Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. Botanical Studies, 55, 22. https://doi.org/10.1186/1999-3110-55-22.
32.Ascough, G. D. (2008). Micropropagation and In vitro manipulation of Watsonia. Ph.D. Thesis, University of KwaZulu-Natal, Piertermartzburg. 189 p.
33.Nilanthi, D., Chen, X. L., Zhao, F., Yang, Y., & Wu, H. (2009). Induction of tetraploids from petiole explants through colchicine treatments in Echinaceae purpurea L. Journal of Biomedicine and Biotechnology, 34, 1-7. https://doi.org/ 10.1155/2009/343485.
34.Lavania, U. C., & Srivastava, S. (1988). Ploidy dependence of chromosomal variation in callus cultures of Hyoscyamus muticus L. Protoplasma, 145, 55-8.
35.Kong, D., Li, Y., Bai, M., Deng, Y., Liang, G., & Wu, H. (2017) A comparative study of the dynamic accumulation of polyphenol components and the changes in their antioxidant activities in diploid and tetraploid Lonicera japonica. Plant Physiology and Biochemistry, 112, 87-96. https:// doi.org/10.1016/j.plaphy.2016.12.027.
36.Griesbach, R. J., & Kamo, K. K. (1996). The effect of induced polyploidy on the flavonols of Petunia ‘Mitchell’. Phytochemistry, 42, 361-363.
37.Bagheri, M., & Mansour, H. (2015). Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L. Applied Biochemistry and Biotechnology, 175, 2366-2375. https:// doi.org/10.1007/s12010-014-1435-8.
38.Tossi, V. E., Martínez Tosar, L. J., Laino, L. E., Iannicelli, J., Regalado, J. J., Escandón, A. S., Baroli, I., Causin, H. F., & Pitta-Álvarez, S. I. (2022). Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Frontiers in Plant Science, 13. https://doi.org/ 10.3389/fpls.2022.869423.
39.Gaynor, M. L., Lim-Hing, S., & Mason, Ch. M. (2020). Impact of genome duplication on secondary metabolite composition in non-cultivated species: a systematic meta-analysis. - Annals of Botany, 126, 363-376. https://doi.org/ 10.1093/aob/mcaa107.
40.Buggs, R. J. A., Soltis, P. S., & Soltis, D. E. (2009). Does hybridization between divergent progenitors drive whole-genome duplication?. Molecular Ecology, 18(16), 3334-3339. https://doi. org/10.1111/j.1365-294X.2009.04285.x.
41.Zagoskina, N. V., Zubova, M. Y., Nechaeva, T. L., Kazantseva, V. V., Goncharuk, E. A., Katanskaya, V. M., Baranova, E. N., & Aksenova, M. A. (2023). Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications (Review). International Journal of Molecular Sciences, 24(18), 13874. https://doi. org/10.3390/ijms241813874.
42.Barber, H. N. (1970). Hybridization and the evolution of plants. Taxon, 19, 154-160. https://doi.org/10.2307/ 1217947.
43.Dhooghe, E., Van Laere, K., Eeckhaut, T., Leus, V., & Van Huylenbroeck, J. (2011). Mitotic chromosome doubling of plant tissues In vitro. Plant Cell, Tissue and Organ Culture, 104, 359-373. https:// doi.org/ 10.1007/ s11240-010-9786-5.
44.Ruiz, M., Oustric, J., Santini, J., & Morillon, R. (2020). Synthetic polyploidy in grafted crops. Frontiers in Plant Science, 11, 540894. https://doi.org/10. 3389/fpls.2020.540894.
45.Chen, Z. J., & Ni, Z. F. (2006). Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays, 28, 240e252. https://doi.org/10.1002/bies.20374.
46.Zhou, Y. Y., Kang, L., Liao, S. Y., Pan, Q., Ge, X., & Li, Z. Y. (2015). Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese woad (Isatis indigotica Fort.). Plos One, 10, e0116392. https://doi. org/10.1371/journal.pone.0116392.
47.Wang, H., Li, Y., Wang, S., Kong, D., Sahu, S. K., Bai, M., Li, H., Li, L., Xu, Y., Liang, H., Liu, H., & Wu, H. (2020). Comparative transcriptomic analyses of chlorogenic acid and luteolosides biosynthesis pathways at different flowering stages of diploid and tetraploid Lonicera japonica. Peer J. 8, e8690. https://doi.org/10.7717/peerj.8690.