Evaluation of some growth traits of quinoa cultivars (Chenopodium quinoa Willd.) affected by moisture levels and planting date in two regions of South Khorasan

Document Type : scientific research article

Authors

1 Ph.D. Student of Agronomy, Dept. of Plant Production and Genetics, Faculty of Agriculture, University of Birjand, Birjand, Iran.

2 Corresponding Author, Associate Prof., Dept. of Plant Production and Genetics, Plant and Environmental Stresses Research Group, Faculty of Agriculture, University of Birjand, Birjand, Iran.

3 Associate Prof., Dept. of Plant Production and Genetics, Plant and Environmental Stresses Research Group, Faculty of Agriculture, University of Birjand, Birjand, Iran.

4 Associate Prof., Dept. of Water Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran

Abstract

Growth is a major component of fitness in all organisms an important mediator of competitive interactions in plant communities and a central determinant of yield in crops. Every year about 12 million hectares of productive land has become dry and barren due to human activities and climate. Quinoa has a very high genetic diversity and can be cultivated in a wide range of soils, climates and latitudes. It also is a plant responds to drought stress through escape, tolerance and avoidance of drought and has an extraordinary capacity for cultivation in dry and low-water soils because of its capabilities such as low inherent need for water, the maintenance of leaf surface and the ability to resume the speed of photosynthesis after drought stress.
In order to evaluate the trend changes in the height and leaf greenness index of quinoa, four separate experiments were conducted in factorial layout based on randomized complete block design with three replications in two regions (Birjand and Sarbisheh) and two planting dates (March and July) in 2018-2019. The experimental factors included five moisture levels (25, 50, 75, 100 and 125% of crop water requirement) and three quinoa cultivars (Titicaca, Giza1 and Redcarina). Separate analysis of variance was also performed for each sampling time. At the end of the growing season, the plant height and the length of the main and sub inflorescences were analyzed as a compound analysis that the effects of time (planting date) and place were considered fixe.
The results of variance analysis in four separate experiments showed that in both regions, in March cultivation, Redcarina and in August cultivation, Giza1 reached the maximum value of leaf greenness index later than other cultivars and decreased with a lower slope and they actually had a higher leaf greenness index. Also, the highest plant height in March and August cultivation was observed in Redcarina and Giza1 cultivars respectively. At the beginning of the growing season, the highest value of leaf greenness index was observed in the level of 125% of water requirement, which was not significantly different from other moisture levels. With the passage of time, the value of leaf greenness index increased in lower moisture levels so that its value was higher at 25% water requirement level and had a significant difference with other levels. The highest plant height was at the level of 125% water requirement no significant difference was observed between the levels of 125% and 100% plant's water requirement in both places and time studied. Based on the results of composite analysis at the end of the growing season, the highest and lowest plant height was observed in Redcarina and Titicaca cultivars respectively and the cultivar had no significant effect on the length of main and sub inflorescences. Planting date had no significant effect on plant height. however, the maximum main inflorescence length and the lowest sub inflorescence length were obtained from August cultivation. The maximum plant height and main inflorescence length (86.34 and 19.04 cm respectively) were observed in Sarbisheh, and the maximum sub inflorescence length (14.17 cm) was observed in Birjand. By reducing irrigation from the level of 125% to the levels of 100, 75, 50 and 25% of water requirement, the plant height decreased by 6.50, 15.11, 26.88 and 41.13%, respectively, the main inflorescence length decreased by 7.96, 16.52, 20.90 and 32.83%, respectively and the sub inflorescence length decreased by 9.29, 19.38, 40.76 and 47.51% respectively.
In general, Redcarina at March cultivation date, and Giza1 at July cultivation date, had the best height plant, leave greenness index and length main and sub inflorescences compared to other cultivars. Applying.....

Keywords

Main Subjects


1.González, J. A., Eisa, S. S., Hussin, S. A. E. S., & Prado, F. E. (2015). Quinoa: An Incan crop to face global changes in agriculture. In: Murphy, K. & Matangiihan, J. Quinoa: Improvement and sustainable production, John Wiley and Sons, 1-18. doi:10.1002/97811186 28041.ch1.
2.Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., Bazile, D., Jacobsen, S. E., & Molina-Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development. 34, 349-359. doi:10.1007/ s13593-013-0195.
3.Jancurova, M., Minarovičova, L., & Dandar A. (2009). Quinoa - a review. Czech Journal of Food Science, 27, 71-79.
4.Food and Agriculture Organization. (2023). https://www.fao.org/faostat/ en/ #data/QCL. [Online: 22 August 2023].
5.Aguilar, P. C., & Jacobsen, S. E. (2003). Cultivation of quinoa on the Peruvian altiplano. Food Reviews International.
19, 31-41. doi:10.1081/FRI-120018866.
6.Salehi, M., & Dehghani, F. (2018). Guide to planting, holding and harvesting quinoa in saline conditions. Agricultural research, education and extension organization. 96 p. [In Persian]
7.Samadzadeh, A. R., Zamani, G. R., & Fallahi, H. R. (2020). Possibility of quinoa production under South-Khorasan climatic condition as affected by planting densities and sowing dates. Applied Field Crops Research. 33 (1), 82-104. [In Persian]. doi:10.22092/AJ.2020. 125793.1392.
8.Najafinezhad, H., Koohi, N., & Darvishi, D. (2022). Evaluation of grain yield and quality of quinoa cultivars as affected by planting date and plant density in Jupar region of kerman. Iranian Journal of Field Crop Science. 53 (1), 113-129.
[In Persian]. doi:10.22059/IJFCS.2021. 311672.654761.
9.Hirich, A., Choukr-Allah, R., & Jacobsen, S. E. (2014). Quinoa in Morocco – Effect of sowing dates on development and yield. Journal of Agronomy and Crop Science, 1-7. doi:10.1111/jac.12071.
10.Bazile, D., Bertero, D., & Nieto, C. (2014). Estado del arte de la quinua en el mundo en 2013. In Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), Santiago, Chile, y Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, Francia. 728 p.
11.AlKhamisi, S. A., Nadaf, S. K., Al-Jabri, N. M., Al-Hashmi, K. S., Al-Shirawi, A. I., Khan, R. R., Al-Sulaim, H. A., & Al-Azri, M. S. (2021). Productivity of Quinoa (Chenopodium quinoa L.) Genotypes Across Different Agro-Ecological Regions of Oman. The Open Agriculture Journal. 15, 98-109. doi:10.2174/1874331502115010098.
12.Maliro, M. F., Guwela, V. F., Nyaika, J., & Murphy, K. M. (2017). Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi. Frontiers in Plant Science, 8, 227(1-9). doi:10.3389/fpls.2017.00227.
13.Naneli, I., Tanrikulu, A., & Dokuyucu, T. (2017). Response of the quinoa genotypes to different locations by grain yield and yield components. International Journal of Agriculture Innovations and Research, 6, 446-451.
14.Rojas, W., Pinto, M., Alanoca, C., Gómez-Pando, L., León-Lobos, P., Alercia, A., Diulgheroff, S., Padulosi, S., & Bazile, D. (2015). Chapter1-5: "Quinoa genetic resources and ex situ conservation"in State of the Art Report on Quinoa Around the World 2013, eds Bazile, D., Bertero, D., and Nieto C. (Rome:FAO;CIRAD), 56-82.
15.Hinojosa, L., Kumar, N., Gill, K. S., & Murphy, K. M. (2019). Spectral reflectance indices and physiological parameters in quinoa under contrasting irrigation regimes. Crop Science. 59, 1927-1944. doi:10.2135/cropsci 2018.11.0711.
16.Algosaibi, A. M., El-Garawany, M. M., Badran, A. E., & Almadini, A. M. (2015). Effect of irrigation water salinity on the growth of quinoa plant seedlings. Journal of Agricultural Science. 7 (8), 205-214. doi:10.5539/jas.v7n8p205.
17.EL-Harty, E. H., Ghazy, A., Alateeq, T. K., Al-Faifi, S. A., Khan, M. A., Afzal, M., Alghamdi, S. S., & Migdadi, H. M. (2021). Morphological and Molecular Characterization of Quinoa Genotypes. Agriculture, 11 (4), 286 (1-16). doi:10.3390/agriculture11040286.
18.Kellogg, J. A., Reganold, J. P., Murphy, K. M., & Arpenter-Boggs, L. A. (2021). A Plant-Fungus Bioassay Supports the Classification of Quinoa (Chenopodium quinoa Willd.) as Inconsistently Mycorrhizal. Plant Microbe Interactions. Published online. doi:10.1007/s00248-021-01710-1.
19.Tan, M., & Temel, S. (2018). Performance of some quinoa (Chenopodium quinoa Willd.) genotypes grown in different climate conditions. Turkish Journal of Field Crops, 23 (2), 180-186. doi:10.17557/tjfc. 485617.
20.Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants. 8, 1-31. doi:10.3390/antiox8040094.
21.Jaikishun, S., Li, W., Yang, Z., & Song, S. (2019). Quinoa: in perspective of global challenges. Agronomy. 9, 1-15. doi:10.3390/agronomy9040176.
22.Oneto, C. D., Otegui, M. E., Baroli, I., Beznec, A., Faccio, P., Bossio, E., Blumwald, E., & Lewi, D. (2016). Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. Journal of Biotechnology. 220, 66-77. doi:10.1016/j.jbiotec.2016. 01.014.
23.Nguyen, L. V., Bertero, D., Hoang, D. T., & Long, N. V. (2022). Variation in quinoa roots growth responses to drought stresses. Journal of Agronomy and Crop Science, 208 (6), 830-840. doi:10.1111/jac.12528.
24.Salek Mearaji, H., Tavakoli, A., & Sepahvand, N. A. (2020). Evaluating the effect of cytokinin foliar application on morphological traits and yield of quinoa (Chenopodium quinoa Willd.) under optimal irrigation and drought stress conditions. Journal of Crop Ecophysiology. 14 (4), 479-498. [In Persian]. doi:10.30495/jcep.2021.679976.
25.Lin, P. H., & Chao, Y. Y. (2021). Different Drought-Tolerant Mechanisms in Quinoa (Chenopodium quinoa Willd.) and Djulis (Chenopodium formosanum Koidz.) Based on Physiological Analysis. Plants, 10 (11), 2279 (2-15). doi:10.3390/plants10112279.
26.Beyrami, H., Rahimian, M. H., Salehi, M., Yazdani Biouki, R., Shiran-Tafti, M., & Nikkhah, M. (2020). Effect of Irrigation Frequency on Yield and Yield Components of Quinoa (chenopodium quinoa) under Saline Condition. Journal of agricultural science and sustainable production. 30 (3), 347-357. [In Persian]
27.Kafi, M., & Rostami, M. (2009). Yield characteristics and oil content of three safflower. Iranian journal of field crops research. 5 (9), 121-132. doi:10.22067/ GSC.V5I1.903.
28.Salehi, M., Koocheki, A., & Nasiri Mahalati, M. (2003). Leaf nitrogen and SPAD reading as indicator for drought stress in wheat. Iranian journal of field crops research. 1 (2), 199-204. [In Persian]. dor:20.1001.1.20081472. 1382.1.2.7.5.
29.Monajem, S., Ahmadi, A., & Mohammadi, V. (2011). Effect of drought stress on photosynthesis, partitioning of photoassimilates and grain yield in rapeseed cultivars. Iranian Journal of Crop Sciences. 13 (3), 533-547. [In Persian]. dor:20.1001. 1.15625540.1390.13.3.7.5.
30.Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., Hassan, L., Mohammed, M. I., Mambetov, O., Otambekova, M., Sepahvand, N. A., Shams, A., Souici, D., Miri, K., & Padulosi, S. (2016). Worldwide Evaluations of Quinoa: Preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in plant science. 7, 1-18. doi:10.3389/fpls. 2016.00850.
31.Jacobsen, S. E. (2017). The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science. 203, 603-613. doi:10.1111/jac.12228.
32.Bagheri, M. (2018). Handbook of quinoa cultivation. Seed and Plant Improvement Institute Publication. 48 p. [In Persian]
33.Maestro-Gait´an, I., Granado-Rodríguez, S., Orús, M. I., Matías, J., Cruz, V., Bola˜nos, L., & Reguera, M. (2022). Genotype-dependent responses to long-term water stress reveal different water-saving strategies in Chenopodium quinoa Willd. Environmental and Experimental Botany, 201, 1-12. doi:10.1016/j.envexpbot.2022.104976.
34.Bahrami, M., Talebnejad, R., & Sepaskhaj, A. R. (2021). Investigation of Water and Nitrogen Management on yield and yield components of Quinoa (Chenopodium quinoa Willd.) in Bajgah (Fars Province). Iranian Journal of Soil and Water Research. 42 (8), 2049-2059. [In Persian]. doi:10.22059/ ijswr.2021. 320412.668913.
35.Jamali, S., Shaifan, H., & Sajadi, F. (2019). The effect of different seawater and deficit irrigation regimes on leaf properties of quinoa. Water and Irrigation Management. 8 (2), 177-191. [In Persian]. doi:10.22059/JWIM. 2018.249473.585.
36.Taaime, N., El Mejahed, K., Moussafir, M., Bouabid, R., Oukarroum, A., Choukr-Allah, R., & El Gharous, M. (2022). Early sowing of quinoa cultivars, benefits from rainy season and enhances quinoa development, growth, and yield under arid condition in Morocco. Sustainability. 14, 1-19. doi:10.3390/su14074010.
37.Rostami, M., & Mohammadi, H. (2018). Effect of plant density and temperature on yield and morpho-physiological traits of garlic (Allium sativum L.). Iranian Journal of Medicinal and Aromatic Plants. 34 (5), 766-780. [In Persian]. doi:10.22092/ijmapr.2018.120542.2250.
38.Wu, C., Wang, M., Dong, Y., Cheng, Z., & Meng, H. (2015). Growth, bolting and yield of garlic (Allium sativum L.) in response to clove chilling treatment. Scientia Horticulturae, 194, 43-52. doi:10.1016/j.scienta.2015.07.018.
39.Thiam, E., Allaoui, A., & Benlhabib, O. (2021). Quinoa productivity and stability evaluation through varietal and environmental interaction. Plants, 10 (4), 714 (1-14). doi:10.3390/plants 10040714.
40.Maamri, K., Zidane, O. D., Chaabena, A., Fiene, G., & Bazile, D. (2022). Adaptation of some quinoa genotypes (Chenopodium quinoa Willd.), grown in a saharan climate in Algeria. Life, 12 (11), 1854(1-22). doi:10.3390/ life 12111854.
41.Pulvento, C., Riccardi, M., Lavini, A., d’Andria, R., Iafelice, G., & Marconi, E. (2010). Field trial evaluation of two Chenopodium quinoa genotypes grown under rain‐fed conditions in a typical Mediterranean environment in South Italy. Journal of Agronomy and Crop Science. 196 (6), 407-411. doi:10.1111/ j.1439-037X.2010.00431x.
42.Hashemzadeh, F., Roshdi, M., & Yarnia, M. (2011). Evaluation of Grain Yield and Some Agronomic Traits of Tow Corn (Zea mays) Varieties as a Second Crop under Drought Stress and Application of Cycocel. Journal of Crop and Weed Ecophysiology. 5 (1), 65-78. [In Persian]
43.Sepehri, A., Moddares Sanavi, A. M., Gharahyazi, B., & Yamini, Y. (2002). Effect of water deficit and different nitrogen rates on growth and development stages, yield and yield component of maize (Zea mays L.). Iranian journal of crop sciences. 4 (3), 184-195. [In Persian]
44.Mohammadi, F., Maleki, A., & Fathi, A. (2021). Effects of Drought Stress and Humic Acid on Plant Growth, Yield Quality and Its Components of Quinoa (Chenopodium quinoa Willd). Journal of Crop Nutrition Science, 7 (3), 11-23.
45.Saddiq, M. S., Wang, X., Iqbal, S., Hafeez, M. B., Khan, S., Raza, A., Iqbal, J., Maqbool, M. M., Fiaz, S., Qazi, M. A., & Bakhsh, A. (2021). Effect of water stress on grain yield and physiological characters of quinoa genotypes. Agronomy, 11 (10), 1934 (1-16). doi:10.3390/agronomy11101934.
46.Al-Naggar, A. M. M., Abd El-Salam, R. M., Badran, A. E. E., & El-Moghazi, M. M. (2017). Drought tolerance of five quinoa (Chenopodium quinoa Willd.) genotypes and its association with other traits under moderate and severe drought stress. Asian Journal of Advances in Agricultural Research, 3, 1-13.  doi:10.9734/AJAAR/2017/37216.
47.Fazeli, F., Akbari, G. A., Naderi Arefi, A., & Benakashani, F. (2021). Response of different quinoa (Chenopodium quinoa) genotypes to planting date in terms of morphological traits, yield and yield components in Garmsar region. Iranian Journal of Field Crop Science. 52 (2), 41-49. [In Persian]. doi:10. 22059/IJFCS.2020.303866.654725.
48.Brenner, W. G., Ramireddy, E., Heyl, A., & Schmülling, T. (2012). Gene regulation by cytokinin in Arabidopsis. Frontiers in Plant Science. 3 (8), 1-22. doi:10.3389/fpls.2012.00008.
49.Gharineh, M. H., Bakhshandeh, A., Andarzian, B., & Shirali, M. (2019). Effects of sowing dates and irrigation levels on morphological traits and yield of Quinoa (Chenopodium quinoa Willd) in Khuzestan. Iranian Journal of Field Crop Science, 50 (3), 149-156. [In Persian]. doi:10.22059/ijfcs.2018. 209566.654135
50.Kia, M., Bagheri, N., Babaeian Jelodar, N., & Bagheri, M. (2022). Investigation of Morphological and Genotypic Characteristics of Quinoa in Gorgan Region. Journal of Crop Breeding. 14 (43), 145-154. [In Persian]. doi:10. 52547/jcb.14.43.145.