1.De Souza, V. R., Pereira, P. A. P., da Silva, T. L. T., de Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362-368.
2.Larrosa, M., García-Conesa, M. T., Espín, J. C., & Tomás-Barberán, F. A. (2010). Ellagitannins, ellagic acid and vascular health. Molecular Aspects of Medicine, 31 (6), 513-539.
3.Klamkowski, K., & Treder, W. (2006). Morphological and physiological responses of strawberry plants to water stress. Agriculturae Conspectus Scientificus, 71 (4), 159-165.
4.Krueger, E., Schmidt, G., & Brückner, U. (1999). Scheduling strawberry irrigation based upon tensiometer measurement and a climatic water balance model. Scientia Horticulturae, 81 (4), 409-424.
5.Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: an overview. Plant Responses to Drought Stress: From Morphological to Molecular Features, 1-33.
6.Marino, M., Li, Y., Rueschman, M. N., Winkelman, J. W., Ellenbogen, J. M., Solet, J. M., Dulin, H., Berkman, L.F., & Buxton, O. M. (2013). Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep, 36 (11), 1747-1755.
7.Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66 (3), 647-656.
8.Arnao, M. B., & Hernández‐Ruiz, J. (2015). Functions of melatonin in plants: a review. Journal of pineal research,
59 (2), 133-150.
9.Zhang, Y., Zhang, X., Wen, J., Wang, Y., Zhang, N., Jia, Y., & Zeng, X. (2021). Exogenous fulvic acid enhances stability of mineral-associated soil organic matter better than manure. Environmental Science and Pollution Research, 1-12.
10.Mahmoud, M. M., Hassanein, A. H. A., Mansour, S. F., & Khalefa, A. M. (2011). Effect of soil and foliar application of humic acid on growth and productivity of soybean plants grown on a calcareous soil under different levels of mineral fertilizers. Journal of Soil Sciences and Agricultural Engineering, 2 (8), 881-890.
11.Zahedi, S. M., Hosseini, M. S., Fahadi Hoveizeh, N., Kadkhodaei, S., & Vaculík, M. (2023). Physiological and biochemical responses of commercial strawberry cultivars under optimal and drought stress conditions. Plants, 12 (3), 496.
12.Cavvaza, L., Patruno, A., & Cirillo, E. )2007). Field capacity in soils with a yearly oscillating water table. Biosystems Eng, 98, 364-370.
13.Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55 (1), 11-33.
14.Waling, I., Vark, W. V., Houba, G., & Van derlee, J. J. (1989). Soil and Plant Analysis, a series of syllabi. Part 7. Plant Anal Proceed. Wageningen Agriculture University. Netherland.
15.Wani, R. A., Sheema, S., Dar, N. A., Angchuk, S., & Parray, G. A. (2013). Irrigation regimes effecting drought tolerance of grape rootstocks under cold arid conditions. International Journal of Scientific & Technology Research, 2, 113-117.
16.Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188.
17.Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331 (3), 215-225.
18.Anjum, S. A., Xie, X., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African journal of agricultural research, 6 (9), 2026-2032.
19.Kabiri, R., Hatami, A., Oloumi, H., Naghizadeh, M., Nasibi, F., & Tahmasebi, Z. (2018). Foliar application of melatonin induces tolerance to drought stress in Moldavian balm plants (Dracocephalum moldavica) through regulating the antioxidant system. Folia Horticulturae, 30 (1), 155.
20.Sarropoulou, V., Dimassi-Theriou, K., Therios, I., & Koukourikou-Petridou, M. (2012). Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium× Prunus cerasus). Plant Physiology and Biochemistry, 61, 162-168.
21.Saidimoradi, D., Ghaderi, N., & Javadi, T. (2019). Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae, 256, 108594.
22.Zydlik, Z., & Zydlik, P. (2023). The Effect of a Preparation Containing Humic Acids on the Growth, Yield,
and Quality of Strawberry Fruits (Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier). Agronomy, 13 (7), 1872.
23.Adak, N., Gubbuk, H., & Tetik, N. (2018). Yield, quality and biochemical properties of various strawberry cultivars under water stress. Journal of the Science of Food and Agriculture,
98 (1), 304-311.
24.Janas, K. M., & Posmyk, M. M. (2013). Melatonin, an underestimated natural substance with great potential for agricultural application. Acta physiologiae plantarum, 35, 3285-3292.
25.Sadak, M. S., Abdalla, A. M., Abd Elhamid, E. M., & Ezzo, M. I. (2020). Role of melatonin in improving growth, yield quantity and quality of Moringa oleifera L. plant under drought stress. Bulletin of the National Research Centre, 44 (1), 1-13.
26.Suh, H. Y., Yoo, K. S., & Suh, S. G. (2014). Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.). Horticulture, Environment, and Biotechnology, 55, 455-461.
27.Khang, V. T. (2011). Fulvic foliar fertilizer impact on growth of rice and radish at first stage. Omonrice, 18, 144-148.
28.Ahanger, M. A., & Ahmad, P. (2019). Role of mineral nutrients in abiotic stress tolerance: revisiting the associated signaling mechanisms. Plant signaling molecules, 269-285.
29.Liang, B., Ma, C., Zhang, Z., Wei, Z., Gao, T., Zhao, Q., Ma, F., & Li, C. (2018). Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and experimental botany, 155, 650-661.
30.Bawa, G., Feng, L., Shi, J., Chen, G., Cheng, Y., Luo, J., & Wang, X. (2020). Evidence that melatonin promotes soybean seedlings growth from low-temperature stress by mediating plant mineral elements and genes involved in the antioxidant pathway. Functional Plant Biology, 47 (9), 815-824.
31.Da Silva, E. C., Nogueira, R. J. M. C., da Silva, M. A., & de Albuquerque, M. B. (2011). Drought stress and plant nutrition. Plant stress, 5 (1), 32-41.
32.Roy, M., Niu, J., Irshad, A., Kareem, H. A., Hassan, M. U., Xu, N., Sui, X., Guo, Z., Amo, A., & Wang, Q. (2021). Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress, 2, 100044.
33.Dawood, M. G., & El-Awadi, M. E. (2015). Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana, 20 (2), 223-235.
34.Babarabie, M., Zarei, H., Badeli, S., Danyaei, A., & Ghobadi, F. (2020). Humic acid and folic acid application improve marketable traits of cut tuberose (Polianthes tuberosa). Journal of Plant Physiology and Breeding, 10 (1), 85-91.
35.Youssif, S. B., & Youssif, S. B. (2017). Response of potatoes to foliar spray with cobalamin, folic acid and ascorbic acid under North Sinai conditions. Middle East Journal of Agricultural Research, 6 (3), 662-672.
36.Al-Maliky, A. W., Jerry, A. N., & Obead, F. I. (2019). The effects of foliar spraying of folic acid and cysteine on growth, chemical composition of leaves and green yield of faba bean (Vicia faba L.). Basrah Journal of Agricultural Sciences, 32 (2), 223-229.
37.Poudineh, Z., Moghadam, Z. G., & Mirshekari, S. (2015, January). Effects of humic acid and folic acid on sunflower under drought stress. In Biological Forum (Vol. 7, No. 1, p. 451). Research Trend.