واکنش بذرهای پرایمینگ شده کلزا در پاسخ به دماهای مختلف

نوع مقاله: پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه گلستان

چکیده

سابقه و هدف: جوانه‌زنی مطلوب بذر؛ دوام، استقرار و عملکرد گیاهان را تضمین می‌کند. بذرهایی که بتوانند در شرایط مختلف محیطی از سرعت و یکنواختی بالای جوانه‌زنی و سبز شدن برخوردار باشند در حصول عملکرد مناسب نقش قابل‌توجهی خواهند داشت. امروزه روش‌های مختلفی برای بهبود ویژگی‌های بذر وجود دارد که یکی از رایج‌ترین این تکنیک‌ها پرایمینگ بذر می‌باشد. پرایمینگ می‌تواند با بهبود درصد، سرعت و یکنواختی جوانه‌زنی و سبز شدن، باعث استقرار گیاه چه های قوی به‌ویژه در تنش‌های محیطی شود و موفقیت در تولید را به دنبال داشته باشد. همچنین شناخت پاسخ فیزیولوژیک بذرهای پرایمینگ شده نسبت به شرایط مختلف محیطی ازجمله تنش دمایی می‌تواند باعث اثربخشی دوچندان این تکنیک شود. بنابراین در این مطالعه واکنش بذرهای پرایمینگ شده ارقام مختلف کلزا به دما بررسی شد.

مواد و روش‌ها: ارقام کلزا مورداستفاده در این مطالعه شامل رقم‌های DK-xpower، تراپر و هایولا50 بود. به‌منظور اعمال تیمار پرایمینگ از دو روش هیدروپرایمینگ و اسموپرایمینگ استفاده شد. آزمون جوانه‌زنی در دماهای 5، 10، 15، 20، 25، 30، 35، 37 و 40 درجه سانتی‌گراد روی بذرهای پرایمینگ شده و بذرهای بدون پرایمینگ انجام و پاسخ درصد و سرعت جوانه‌زنی به دما بررسی شد.

یافته‌ها: نتایج نشان داد که واکنش درصد جوانه‌زنی بذرهای ارقام کلزا در پاسخ به دما و تیمارهای پرایمینگ متفاوت بود و هر رقم رفتار متمایزی از خود نشان داد. اثرات پرایمینگ بر درصد جوانه‌زنی در دماهای پایین در رقم‌های هایولا50 و تراپر بسیار قابل‌توجه بود. همچنین پرایمینگ توانست در هر سه رقم مورد مطالعه، جوانه‌زنی در دماهای بالا را به‌طور معنی‌داری نسبت به بذرهای شاهد افزایش دهد. سرعت جوانه‌زنی نیز تحت تأثیر تیمار پرایمینگ و دما قرار گرفت و در کلیه دماها، سرعت جوانه‌زنی بذرهای پرایمینگ شده بیشتر از بذرهای بدون پرایمینگ بود. در هر سه رقم کلزا، پرایمینگ باعث کاهش دمای پایه (بین 4/0 تا 5/1 درجه سانتی‌گراد) جوانه‌زنی شد. دمای مطلوب جوانه‌زنی نیز به‌ویژه در رقم‌های تراپر و هایولا50، به‌شدت تحت تأثیر تیمار پرایمینگ قرار گرفت. همچنین پرایمینگ باعث افزایش دمای سقف جوانه‌زنی در بذرهای پرایمنگ شده نسبت به بذرهای شاهد (حدود 5-1 درجه سانتی‌گراد) شد. همچنین در اکثر دماها، بین تیمارهای پرایمینگ، تأثیر هیدروپرایمینگ بیشتر از اسموپرایمینگ بود.

نتیجه‌گیری: به‌طورکلی تیمارهای پرایمینگ توانستند باعث بهبود جوانه‌زنی بذرهای ارقام مختلف کلزا در دماهای مختلف شوند. همچنین پرایمینگ با رفع کمون ثانویه در دمای پایین و رفع بازدارندگی جوانه‌زنی در دمای بالا باعث بهبود شاخص‌های جوانه‌زنی در این دماها شد و توانست به‌طور قابل‌توجهی باعث کاهش حساسیت به دما و افزایش دامنه بردباری جوانه‌زنی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The germination responses of primed Canola seeds to varying temperatures

نویسندگان [English]

  • Mohsen Malek 1
  • Benjamin Torabi 1
  • Farshid Ghaderi-Far 1
  • Hamid Reza Sadeghipour 2
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Golestan University
چکیده [English]

Background and objectives: Optimal seed germination guarantees the plant durability, establishment and yield. Uniform and rapid germination and emergence of seeds under various environmental conditions play a significant role in achieving suitable yield. Nowadays, there are several ways to improve seed characteristics, and one of the most commonly used ones is seed priming. Priming can increase the percentage, rate and uniformity of seed germination and emergence. These in turn results in the establishment of strong plant especially under environmental stresses and lead to success in production. In addition, knowledge on the physiological responses of primed seeds to different environmental conditions, including temperature stress, can increase the effectiveness of this technique. Therefore in this study, the reaction of primed seeds from canola cultivars to temperature was investigated.
Materials and Methods: The canola cultivars used in this study included DK-xpower, Traper and Hayola50. Hydroperiming and osmopriming were used as the priming treatments. Germination tests in primed and non-primed seeds were carried out at 5, 10, 15, 20, 25, 30, 35, 37 and 40 °C. Then the response of germination rate and germination percentage to temperature were investigated.
Results: The seed germination percentages of canola cultivars were different in response to temperature and priming treatments, and each cultivar had a distinct behavior. The effects of priming on germination percentage at low temperatures were significant in Hayola50 and Traper cultivars. Also, priming in all the studied cultivars could increase significantly the germination percentages at high temperatures. Germination rates were also affected by priming treatments and temperature. At each temperature, the germination rates of primed seeds were higher than non-primed ones. In all three canola cultivars, priming reduced the base temperature (from 0.4 to 1.5 °C). The optimum temperature was also strongly affected by priming treatments, especially in the Traper and Hayola50 cultivars. Also, ceiling temperatures in primed seeds increased with respect to control seeds (by about 1 to 5°C). In addition, under various temperatures, hydroperiming was more effective than osmopriming.Finally, priming could reduce the temperature sensitivity of seed germination and increase its tolerance to high temperatures.
Conclusion: In general, priming treatments were able to improve seed germination of canola cultivars at different temperatures. Also, priming by either removing the secondary dormancy at low temperatures and /or improved germination under high temperatures was able to improve germination indices at examined temperatures. Finally, priming could reduce the temperature sensitivity of seed germination and increase its tolerance to high temperatures.

کلیدواژه‌ها [English]

  • Dormancy
  • Secondary dormancy
  • Hydropriming
  • Osmopriming
1.Azizi, M., Soltani, A. and Khavari
Khorasani, S. 2008. Canola (physiology,
agronomy, breeding and biotechnology).
Jihad University of Mashhad Press. 230p.
(Translated In Persian)
2.Akram-ghaderi, F., Soltani, A. and
Sadeghipour, H.R. 2008. Cardinal
temperature of germination in medical
pumpkin (Cucurbita pepo conver pepo
var. styriaca), borago (Borago officinalis
L.) and black cumin (Nigella sativa L.).
Asian J. Plant Sci. 2: 101-109.
3.Akram-Ghaderi, F., Soltani, E., Soltani A.
and Miri, A.A. 2008. Effect of priming on
response of germination to temperature in
cotton. J. Agric. Sci. Natur. Resour.
15: 44-51. (In Persian)
4.Akers, S., Sardar, R. and Motes, J. 1983.
Osmoconditioning vegetable seed as a
synchronization treatment for germination
prior to fluid drilling. Hort. Sci. 18: 567-568.
5.Alvarado, V. and Bradford, K.J. 2002. A
hydrothermal time model explains the
cardinal temperatures for seed germination.
Plant. Cell. Environ. 25: 1061-1069.
6.Arif, M. 2005. Effect of seed priming
on emergence, yield and storability
of soybean. Ph.D. Thesis. NWFP
Agricultural University, Peshavar. 208p.
7.Argyris, J., Truco, M.J., Ochoa, O.,
McHale, L., Dahal, P., Van Deynze, A.,
Michelmore, R.W. and Bradford, K.J.
2011. A gene encoding an abscisic acid
biosynthetic enzyme (LsNCED4) collocates
with the high temperature germination
locus Htg6.1 in lettuce (Lactuca sp.).
Theor. Appl. Genet. 122: 95-108.
8.Boureima, S., Eyletters, M., Diouf, M.,
Diop, T.A. and Van Damme, P. 2011.
Sensitivity of seed germination and
seedling radicle growth to drought stress
in sesame (Sesamum indicum L.). Res. J.
Environ. Sci. 5: 557-564.
9.Brar, G.S., Gomez, J.F., McMichael,
B.L., Matches, A.G. and Taylor, H.M.
1991. Germination of twenty forage
legumes as influenced by temperature.
Agron. J. 83: 173-175.
10.Butler, L.H., Hay, F.R., Ellis,
R.H., Smith, R.D. and Murray, T.B.
2009. Priming and re-drying improve
the survival of mature seeds of Digitalis
purpurea during storage. Ann. Bot.
103: 1261-1270.
11.Bazanska, J. and Lewak, S. 1986. Light
inhibits germination of rape seeds at
unfavorable temperatures. Acta. Physiol.
Plant. 8: 145-149.
12.Belmont, J., Sánchez-Coronado,
M.E., Osuna-Fernández, H.R., OrozcoSegovia, A. and Pisanty, I. 2018.
Priming effects on seed germination of
two perennial herb species in a disturbed
lava field in central Mexico. Seed Sci.
Res. 28: 63-71.
13.Bailly, C., Benamar, A., Corbineau, F.
and Coˆme, D. 2000. Antioxidant
systems in sunflower (Helianthus
annuus L.) seeds as affected by priming.
Seed Sci. Res. 10: 35-42.
14.Bujalski, W. and Nienow, A.W. 1991.
Large-scale osmotic priming of onion
seeds: A comparison of different
strategies for oxygenation. Sci. Hort.
46: 13-24.
15.Chojnowski, M., Corbineau, F. and
Côme, D. 1997. Physiological and
biochemical changes induced in
sunflower seeds by osmopriming and
subsequent drying, storage and aging.
Seed Sci. Res. 7: 323-332.
16.Corbineau, F., Bagniol, S. and Côme, D.
1990. Sunflower (Helianthus annuus L.)
seed dormancy and its regulation by
ethylene. Israel J. Bot. 39: 313-325.
17.Chen, K. and Arora, R. 2013. Priming
memory invokes seed stress-tolerance.
Environ. Exp. Bot. 94: 33-45.
18.Castellanos, M.F.Q., Castillo, O.G.,
Sánchez, P.D., Sánchez, J.M., Carrasco,
A.I.G. and Guzmán, J.M. 2018.
Relieving dormancy and improving
germination of Piquín Chili Pepper
(Capsicum annuum var. glabriusculum)
by priming techniques. Preprints. 2018.
doi: 10.20944/preprints201802.0160.v2.
19.Chen, K. and Arora, R. 2013. Priming
memory invokes seed stress-tolerance.
Environ. Exp. Bot. 94: 33-45.
20.Corbineau, F., Rudnicki, R. and
Côme, D. 1988. Induction of secondary
dormancy in sunflower seeds by high
temperature: possible involvement of
ethylene biosynthesis. Physiol. Plant.
73: 368-373.
21.Criddle, R.C., Smith, B.N. and Hansen,
L.D. 1997. A respiration based
description of plant growth rate
responses to temperature. Planta.
201: 441-445.
22.Cross, H.Z. and Zuber, M.S. 1972.
Prediction of flowering dates in maize
based on different methods of estimating
thermal units. Agron. J. 64: 351-355.
23.Demir, I. 2003. Effect of controlled
hydration treatment on quality of
aubergine seeds following storage.
Phyton. 43: 307-318.
24.Dutta, S. and Bradford, K. 1994. Water
relations of lettuce seed thermosinhibition. II. Ethylene and endosperm
effects on base water potential. Seed Sci.
Res. 4: 11-18.
25.Farhoudi, R., Sharifzadeh, F., Poustini,
Makkizadeh, M.T. and Kochak Por, M.
2006. The effects of NaCl priming
on salt tolerance in canola (Brassica
napus L.) seedlings grown under
saline conditions. Seed Sci. Techol.
35: 754-759.
26.Foti, S., Cosentino, S.L., Patane, C. and
D'agosta, G.M. 2002. Effect of
osmoconditioning upon seed
germination of sorghum (Sorghum
bicolor L.) Moench) under low
temperatures. Seed Sci. Technol.
30: 521-533.
27.Gallardo, M., Derueda, P., Matilla, A.
and Sanchezcalle, I. 1994. The
relationships between ethylene production
and germination of Cicer arietinum
seeds. Biol. Plant. 36: 201-207.
28.Ghaderi-Far, F., Alimagham, S.M.,
Kameli, A.M. and Jamali, M. 2012.
Isabgol (Plantago ovata Forsk) seed
germination and emergence as affected
by environmental factors and planting
depth. Int. J. Plant Prod. 6: 185-194.
29.Ghaderi-Far, F., Alimagham, S.M.,
Poori, K., Ghorbani, M. and Khavari, F.
2014. Evaluation of salinity stress on
emergence and yield of priming wheat
(Triticum aestivum L.). J. Appl. Res.
Plant Ecophysiol. 1: 1-14. (In Persian)
30.Hardegree, S.P., Jones, T.A. and Vactor,
S.S.V. 2002. Variability in Thermal
response of Primed and Nonprimed
Seeds of Squirreltail [Elymus elymoides
(Raf.) Swezey and Elymus multisetus
(JG Smith) ME Jones]. Ann. Bot.
89: 311-319.
31.Hills, P.N. and van Staden, J. 2003.
Thermoinhibition of seed germination.
South. Afr. J. Bot. 69: 455-461.
32.Jafar, M.Z., Farooq, M., Cheema, M.A.,
Afzal, I., Basra, S.M.A., Wahid, M.A.,
Aziz, T. and Shahid, M. 2012.
Improving the performance of wheat by
seed priming under saline conditions.
J. Agron. Crop Sci. 198: 38-45.
33.Jacobsen, S.E. and Bach, A.P. 1998.
The influence of temperature on
seed germination rate in quinoa
(Chenopodium quinoa) Willd. Seed Sci.
Technol. 26: 515-523.
34.McDonald, M.B. 1999. Seed deterioration:
physiology, repair and assessment. Seed
Sci. Technol. 27: 177-237.
35.McDonald, M.B. 2000. Seed priming.
(Eds. M. Black and J.D. Bewley).
Sheffield Academic Press. Pp: 287-325.
36.Mauromicale, G. and Cavallaro, V.
1997. A comparative study of the effects
of different compounds on priming of
tomato seed germination under
suboptimal temperatures. Seed Sci.
Technol. 25: 399-408.
37.Nasreen, S., Khan, M.A., Zia, M.,
Ishaque, M., Uddin, S.A.L.E.E.M.,
Arshad, M. and Rizvi, Z.F. 2015.
Response of sunflower to various pregermination techniques for breaking seed
dormancy. Pakistan J. Bot. 47: 413-416.
38.Paparella, S., Araújo, S.S., Rossi, G.,
Wijayasinghe, M., Carbonera, D. and
Balestrazzi, A. 2015. Seed priming: state
of the art and new perspectives. Plant
Cell Rep. 34: 1281-1293.
39.Pill, W.G., Frett, J.J. and Morneau, D.C.
1991. Germination and seedling
emergence of primed tomato and
asparagus seeds under adverse
conditions. Hort. Sci. 26: 1160-1162.
40.Pandita, V.K., Anand, A. and Nagarajan,
S. 2007. Enhancement of seed
germination in hot pepper following
presowing treatments. Seed Sci.
Technol. 35: 282-290.
41.Pekrun, C., Hewitt, J.D.J. and Lutman,
P.J.W. 1998. Cultural control of
volunteer oilseed rape (Brassica napus).
J. Agric. Sci. 130: 155-163.
42.Pekrun, C., Lutman, P.J.W. and
Baeumer, K. 1997. Germination
behavior of dormant oilseed rape seeds
in relation to temperature. Weed Res.
37: 419-431.
43.Shaykewich, C.F. 1995. An appraisal of
cereal crop phenology modelling. Can.
J. Plant Sci. 75: 329-341.
44.Schwember, A.R. and Bradford, K.J.
2005. Drying rates following priming
affect temperature sensitivity of
germination and longevity of lettuce
seeds. Hort. Sci. 40: 778-781.
45.Schwember, AR. and Bradford, K.J.
2010. Gene expression during seed
priming. Plant Mol. Biol. 73: 105-118.
46.Soltani, A., Robertson, M.J., Torabi, B.,
Yousefi-Daz, M. and Sarparast, R. 2006.
Modelling seedling emergence in
chickpea as influenced by temperature
and sowing depth. Agric. Forest
Meteorol. 138: 156-167.
47.Soltani, E., Ghaderi-Far, F., Baskin,
C.C. and Baskin, J.M. 2016. Problems
with using mean germination time to
calculate rate of seed germination. Aust.
J. Bot. 63: 631-635.
48.Suanda, D.S. 2012. Cardinal Temperatures
of Brassica sp. and how to determine It.
Agrotrop. 2: 33-39.
49.Tarquis, A.M. and Bradford, K.J. 1992.
Pre hydration and priming treatments
that advance germination also increase
the rate of deterioration of lettuce seeds.
J. Exp. Bot. 43: 307-317.
50.Thygerson, T., Harris, J.M., Smith,
B.N., Hansen, L.D., Pendleton, R.L. and
Booth, D.T. 2002. Metabolic response to
temperature for six populations of
winterfat (Eurotia lanata). Thermochim.
Acta. 394: 211-217.
51.Taylor, A.G., Allen, P.S., Bennett, M.A.,
Bradford, K.J., Burris, J.S. and Misra,
M.K. 1998. Seed enhancements. Seed
Sci. Res. 8: 245-256.
52.Torabi, B., Adibniya, M. and Rahimi, A.
2015. Seedling emergence response to
temperature in safflower: measurements
and modeling. Int. J. Plant Prod.
9: 393-412.
53.Toh, S., Imamura, A., Watanabe, A.,
Nakabayashi, K., Okamoto, M.,
Jikumaru, Y., Hanada, A., Aso, Y.,
Ishiyama, K. and Tamura, N. 2008.
High temperature induced abscisic acid
biosynthesis and its role in the inhibition
of gibberellin action in Arabidopsis
seeds. Plant Physiol. 146: 1368-1385.
54.Tuan, P.A., Kumar, R., Rehal, P.K.,
Toora, P.K. and Ayele, B.T. 2018.
Molecular mechanisms underlying
abscisic acid/gibberellin balance in the
control of seed dormancy and germination
in cereals. Plant Sci. 9. In press.
55.Windauer, L., Altuna, A. and BenechArnold, R. 2007. Hydrotime analysis of
Lesquerella fendleri seed germination
responses to priming treatments. Ind.
Crop. Prod. 25: 70-74.
56.Welbaum, G.E. and Bradford, K.J. 1991.
Water relations of seed development and
germination in muskmelon (Cucumis
melo L.) VI. Influence of priming on
germination responses to temperature
and water potential during seed
development. J. Exp. Bot. 42: 393-399.
57.Xia, Q., Maharajah, P., Cueff, G.,
Rajjou, L., Prodhomme, D., Gibon, Y.
and El-Maarouf-Bouteau, H. 2018.
Integrating proteomics and enzymatic
profiling to decipher seed metabolism
affected by temperature in seed
dormancy and germination. Plant Sci.
269: 118-125.
58.Yoong, F.Y., O’Brien, L.K., Truco,
M.J., Huo, H., Sideman, R., Hayes, R.,
Michelmore, R.W. and Bradford,
K.J. 2016. Genetic variation for
thermotolerance in lettuce seed germination
is associated with temperature-sensitive
regulation of ethylene response factor1
(ERF1). Plant Physiol. 170: 472-488.
59.Zheng, G.H., Wilen, R.W., Slinkard, A.E.
and Gusta, L.V. 1994. Enhancement of
canola seed germination and seedling
emergence at low temperature by
priming. Crop Sci. 34: 1589-159.