Evaluation the characteristics of additive and replacement series of garlic (Allium sativum L.) and pea (Pisum sativum L.) intercropping in Gonbad Kavoos and Sari regions

Document Type : original paper

Abstract

Backgrounds and objectives: Nowadays, intercropping is highlighted as a solution to optimize usage of inputs, to decline pesticides and to produce safe food in agriculture. The previous studies represent relative advantages of multiple cropping versus sole cropping. Since, garlic and pea are well-adapted plants to northern Iran climatic conditions and there were no comprehensive studies about their intercropping, the present study was aimed to evaluate and determine the best intercropping treatment between garlic and pea in terms of yield.

Materials and methods: The research was conducted at research farm of Gonbad Kavoos University and Sari during 2013-2014. The experiment was arranged based on randomized complete block design with three replications. Treatments were nine levels including sole cropping of garlic and pea and replacement series of 25:75, 50:50 and 75%:25% pea: garlic and additive series of 25, 50, 75 and 100% pea +100% garlic.

Results: The biological yield of garlic in Gonbad region (2357.21 g/m2) was 10 percent lower than Sari region. Means sulfur percentage in garlic bulb was recorded 0.81 and 0.94 for Gonbad Kavoos and Sari, respectively. The maximum bulb yield (1193.42 g/m2) was belonged to sole cropping of garlic in Sari conditions. Seed yield of pea was 399.3 and 736.17 kg/ha in Gonbad Kavoos and Sari, respectively. Results indicated that the maximum seed yield of pea was recorded in sole cropping and followed by additive series of 100% garlic + 100% pea by 53.3 g/m2. In Sari region, the seed nitrogen and phosphorous content in was 4.85 and 0.29 %, respectively and was 3 and 11.5 % more than Gonbad. The maximum seed potassium (1.53%) was related to additive series of 25% pea + 100% garlic in Sari conditions. The highest land equivalent ratio (1.76), relative crowding coefficient (7.4), aggressivity (0.79) and relative value total (1.53) was recorded when additive series of 75, 25, 100 and 75 % of pea + 100% garlic intercropped in Sari climatic conditions, respectively.
was related to additive series of 25% pea + 100% garlic in Sari conditions. The highest land equivalent ratio (1.76), relative crowding coefficient (7.4), aggressivity (0.79) and relative value total (1.53) was recorded when additive series of 75, 25, 100 and 75 % of pea + 100% garlic intercropped in Sari climatic conditions, respectively.

Conclusion: Overall, results of different additive and replacement series of intercropping showed that the additive series intercropping of 75 and 100 % pea + 100% garlic resulted the maximum quantitative and qualitative yield in both studied regions.

Keywords

Main Subjects


1. Ahmadi, K., Gholizadeh, H., Ebadzadeh, H.R., Hoseinpur, R., Abdeshah, H., Kazemian, A.and Rafiei, M. 2016. Agricultural Statistics in 2015-2016 Cropping Season. Ministry of Jihad-e-Agriculture. 125p.
2. Akunda, E.M. 2004. Improving food production by understanding the effects of intercropping and plant population on soybean nitrogen fixing attributes. J. Food Technol.Afr. 6(4): 110-115.
3. Ariel, C.E., Eduardo, O.A., Benito, G.E. and Lidia, G. 2013. Effects of two plant arrangements in corn (Zea mays L.) and soybean (Glycine max L. merrill) intercropping on soil nitrogen and phosphorus status and growth of component crops at an Argentinean argiudoll. Am. J. Agric. For. 1(2): 22-31.
4. Ayenehband, A. 2006. Ecology Agricultural Ecosystems. Shahid Chamran University Press.376p.
5. Banik, P., Midya, A., Sarkar, B.K. and Ghose, S.S. 2006. Wheat and chickpea intercroppingsystems in an additive experiment. Eur. J. Agron., 24: 325-332.
6. Belel, M.D., Halim, R.A., Rafii, M.Y. and Saud, H.M. 2014. Intercropping of corn with some selected legumes for improved Forage Production: A Review, J. Agric. Sci. 6(3): 48-62.
7. Boonsinchai, N., Potchanakorn, M. and Kijparkorn, S. 2016. Effects of protein reduction andsubstitution of cassava for corn in broiler diets on growth performance, ileal protein
digestibility and nitrogen excretion in feces. Anim. Feed Sci. Technol. 216: 185-196.
8. Chaichi, M.R. and Daryaei, F. 2008. Performance evaluation of forage sorghum and alfalfain intercropping and their impact on the population dynamics of weeds. Iranian J. Field CropSci. 1:137-143.
9. Chalk, P.M. 1996. Nitrogen transfer from legumes to cereals in intercropping. In: Proc. Ofthe Int.Work shop: Dynamics of Roots and Nitrogen in Cropping Systems of the Semi- AridTropics (ICRISAT). Patancheru, Andhra Pradesh, 21-25. Novamber 1994. Pp: 351-374.
10.Chetty, C.K. and Reddy M.N. 1987. A general proposal for ranking intercrop treatments.Indian J. Agric. Sci. 57: 64–65.
11.Cousin, R. 1997. Peas (Pisum sativum L.). Field Crops Res., 53: 111-130.
12.Dahmardeh, M. and Keshtegar, A. 2014. Evaluating yield and yield components of maize(Zeamays L.) in intercropping with peanut (Arachis hypogaea L.). J. Agric. Ecol. 6(2): 311-323.
13.Dolijanovic, Z., Oljaca, S., Kovacevic, D., Simic, M., Momirovic, N. and Jovanovic, Ž.
2013. Drainage and aphanomyces euteiches root rot of pea caused by soil compaction in a
fine-textured soil. Soil Tillage Res. 17(40): 1-12.
14.Emami, A. 1996. Methods of plant analysis. Technical Bulletin Number 982 Research
Institute of Soil and Water. Agricultur Nashr Amoozesh. Karaj-Iran.
15.Gronle, A., Heß, J. and Böhm, H. 2015. Effect of intercropping normal-leafed or semileafless winter peas and triticale after shallow and deep ploughing on agronomic
performance, grain quality and succeeding winter wheat yield. Field Crops Research. 180:
80-89.
16.Hauggaard-Nielsen, H., Andersen, M.K., Jornsgaard, B. and Jensen, E.S. 2006. Density and
relative frequency effects on competitive interactions and resource use in pea–barley
intercrops. Field Crops Res., 95: 256–267.
17.Hmzhey, J.M., Sayedi, G. and Abotalebbian, M.A. 2012. Effect of additive on the
suppression of weeds, yield and yield components of chickpea and barley. J. Crop Prod.
Process., 3: 43-55.
18. Hu, F., Gan, Y., Hongyan Cui, H., Zhao, C., Feng, F., Yin, W. and Qiang Chai, Q. 2016.Intercropping maize and wheat with conservation agriculture principles improves waterharvesting and reduces carbon emissions in dry areas. Eur. J. Agron., 74: 9-17.
19.Javanshir, Gh., Dabbagh Mohammadi Nasab, A. and Hamid, A. 2000. Ecology Intercropping
(Translation). Mashhad Jahad-Daneshgahi press. 222p.
20.Kaur, N., Bhullar, M.S. and Gill, G. 2015. Weed management options for sugarcanevegetable intercropping systems in north-western India. Crop Prot. 74: 18-23.
21.Koochecki, A.R., Nasiri Mohallati, M., Tabrizi, G., Azizi, W. and Jahan, M. 2006.
Evaluation of structural and functional diversity of weed communities wheat and sugar beets
of different Provinces country. Iranian J. Agric. Res. 4(1): 105-129.
22.Koochecki, A.R., Njibnia, S. and Lashe Gani, B. 2010. Evaluating The Performance of
Saffron (Crocus sativus L.) in Intercropping with Crop Beans and Herbs. Publications
University of Mashhad. 222p.
23.Koochecki, A.R. and Nasiri Mohallati, M. 2016. The effect of climate change on agriculture:
crop production forecast and a solution compatible. J. Agric. Res. 14(1): 1-20.
24.Koochecki, A.R. and Soltani, A. 2000. Principles and Agricultural Practices In Arid Areas
(Translation). Publications University of Mashhad. 785p.
25.Kubota, A., Safina, S.A., Shebl, S.M., Mohamed, A.E.A., Ishikawa, N., Shimizu, K., AbdelGhawad, K. and Maruyama, S. 2015. Evaluation of intercropping system of maize and
legominouse in Nile delta of Egipt. Trop. Agri. Develop. 59(1): 14-19.
26.Lithourgidis, A.S., Vlachostergios, D.N., Dordas, C.A. and Damalas, C.A. 2011. Dry matter
yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur. J. Agron.
34: 287-294.
27.Liu, T., Cheng, Z., Meng, H., Ahmad, I. and Zhao, H. 2014. Growth, yield and quality of
spring tomato and physicochemical properties of medium in a tomato/garlic intercropping
system under plastic tunnel organic medium cultivation. Sci. Hortic. 170: 159-168.
28.Majnoon Hossaini. 2015. Lgums and Agronomi production. University Publications of
Tehran. 284p. (In Persian)
29.Malakooti, M.J. and Ballali, M.R. 2004. Balanced Fertilization: A Way to Sustainability in
Agricultural Production. Publication of Agricultural Education. Karaj. 573p.
30.Manjith Kumar, B.R., Chidenand, M., Mansur, P.M. and Salimath, S.C. 2009. Influence of
different row proportions on yield components and yield of rabi crops under mixed farming.
tehran university press., 262p. (In Persian)
31.Mirzapur, M.H., Khoshgoftarmanesh, H., Mirnia, S.Kh., Bahrami, H.A. and Naini, M.R.
2003. Magnesium and potassium interaction effects on growth and yield in a saline soil. J.
Soil Water Sci. 17(2): 61-74.
32.Mokhtarpour, H., Mossavat, S.A. and Faizbakhsh, M.T. 2008. The effect of plant density
and mix ratio on quality and quantity of forage yield in mix intercropping of berseem clover
and barley. Res develop agri hort., 80: 211-219.
33.Mullah Wali, M., Boland Nzar, S.A. and Tabatabai, S.J. 2011. The effect of different
amounts of ammonium nitrate and potassium sulphate concentration of minerals in the
onion. J. Hortic. Sci. 25(1): 101-108.
34.Nosrati, A.A. 2004. Effects of planting method, plant density and seed clove size on
yield of garlic cv Hamedan. Seed Plant Improv. J. 3(20): 401-404.
35.Paivast, Gh.A. 1998. Growing Vegetables. Abrisham Publication of Rasht. 362p. (In
Persian)
36.Pour Amir, F., Koochecki, A.R., Nasiri Mohallati, M. and Ghorbani, R. 2010. The effect of
different combinations of cultivated sesame and pea intercropping on yield and additive
series. Iranian J. Agric. Res. 3(8): 393-402.
37.Rahimi, M.M., Mazaheri, D., Khodabande, N. and Heidary, H. 2003. Evaluation of
intercropping corn and soybean crop in the region. Arsanjan. J. Agric. Sci. 9(3): 109-126. (In
Persian)
38.Radosevich, S., Holt, J. and Ghersa, C. 2007. Ecology of Weeds And Invasive Plants (3rd
Edition). John Wiley and Sons, Inc. New York, NY. Pp: 558
39.Salikutty, J. and Bavrah, B. 2008. Biological efficiency of ash groud based intercropping
systems. Indian J. Agric. Res. 42(2): 86-91.
40.Saseendran, S.A., R. Ahuja, L., Ma, L.W., J. Troutb, T., S. McMaster, G., C. Nielsen, D., M.
Ham, J., A. Andales, A., D. Halvorsone, A., L. Chávezf, J., X. and Fang, Q. 2015.
Developing and normalizing average corn crop water production functions across years and
locations using a system mode. Agric. Water Manag. 157(31): 65–7.
41.Scott, J.K., Yeoh, P.B. and Michael, P.J. 2016. Methods to select areas to survey for
biological control agents: An example based on growth in relation to temperature and
distribution of the weed Conyza bonariensis. Biol. Control. 97: 21-30.
42.Singh, M., Singh, U.B., Ram, M., Yadav, A. and Chanotiya, C.S. 2013. Biomass yield,
essential oil yield and quality of geranium (Pelargonium graveolens L.) as influenced by
intercropping with garlic (Allium sativum L.) under subtropical and temperate climate of
India. Ind. Crops Prod. 46: 234-237.
43.Sousulsk, F.W. and Holt, N.W. 1980. Amino acid composition and nitrogen to protein
factors for grain legumes. Can. J. Plant Sci., 60: 1327-1331.
44.Thorsted, M.D., Olesen, J.E. and Weiner, J. 2006. Width of clover strips and wheat rows
influence grain yield in winter wheat/white clover intercropping. Field Crops Res. 95: 280-
290.
45.Undie, U.L., Uwah, D.F. and Attoe, E.E. 2012. Effect of intercropping and crop arrangement
on yield and productivity of late season maize/soybean mixtures in the humid environment
of south southern nigeria. J. Agric. Sci. 4(4): 37-50.
46.Valizadegan, A. 2015. Study of species diversity and abundance of insect fauna and
agronomic performance in intercropping replacement coriander (Coriandrum sativum L.)
and beans (Vicia faba L.). Iranian J. Crops. 17(1): 69-80. (In Persian)
47.Vandermeer, J. 1992. The Ecology of Intercropping. Great Britania at the University press.
72: 51-66.
48.Vrignon-Brenas, S., Celette, F., Amossé, C. and David, C. 2016. Effect of spring fertilization
on ecosystem services of organic wheat and clover relay intercrops. Eur. J. Agron. 73: 73-82.
49.Willey, R.W. 1979. Intercropping its importance and research needs. I. Competition and
yield advantages. Field Crop Abstr. 32: 1–10.
50.Willey, R.W. and Rao, M.R. 1980. A competitive ratio for quantifying competition between
intercrops. Exp. Agric. 16: 105–117.
51.Xia, H., Zhao, J., Sun, J., Xue, Y., Eagling, T., Bao, X., Zhang, F. and Li, L. 2013. Maize
grain concentrations and above-ground shoot acquisition of micronutrients as affected by
intercropping with turnip, faba bean, chickpea, and soybean. Sci China Life Sci. 56(9): 823-
834.
52.Zhang, L., W., Van der Werf, S., Zhang, B., Li, and Spiertz, J.H.J. 2007. Growth, yield and
quality of wheat and cotton in relay strip intercropping systems. Field Crops Res. 103: 178–
188.
53.Zuo, Y. and Zhang, F. 2007. Effect of peanut mixed cropping with gramineous species on
micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil.
Plant Soil. 306(1): 23-36.