تخمین دماهای کاردینال جوانه‌زنی بذرگل‌مغربی (Oenothera biennis L.) با استفاده از مدل‌های رگرسیون غیرخطی

نوع مقاله : پژوهشی

نویسندگان

1 مدیر گروه باغبانی

2 ریئس پژوهشکده ژنتیک و زیست فناوری طبرستان

3 عضو هیئت علمی

چکیده

چکیده
سابقه و هدف: گل‌مغربی (Oenothera biennis L.) گیاه دارویی مناطق معتدله بوده و بذرهای آن حاوی 30-20 درصد روغن می‌باشد. جوانه‌زنی و استقرار گیاهچه از عوامل تعیین‌کننده عملکرد و زمان رسیدگی در گیاهان می‌باشند. توابع دمایی مختلفی برای توصیف واکنش جوانه‌زنی به دما وجود دارد که از میان آن‌ها سه تابع دوتکه‌ای، بتا و دندان‌مانند بیشتر از بقیه مورد استفاده قرارمی‌گیرند. اگرچه تاکنون مطالعات زیادی در زمینه تعیین دماهای کاردینال جوانه‌زنی و تعیین زمان حرارتی موردنیاز برای سبزشدن تحت تأثیر دما انجام شده است؛ اما اطلاعات زیادی در این زمینه، در مورد گیاه دارویی گل‌مغربی در ایران وجود ندارد. از‌این‌رو، پژوهش حاضر به‌منظور ارزیابی مدل‌های رگرسیون غیرخطی برای توصیف سرعت جوانه‌زنی بذرهای گل‌مغربی نسبت به دما و برآورد دماهای کاردینال جوانه‌زنی بذرهای این گیاه صورت گرفته است.
مواد و روش‌‌ها: این آزمایش در قالب طرح کاملاً تصادفی در هشت دمای ثابت 5، 10، 15، 20، 25، 30، 35 و 40 درجه سانتی‌گراد با چهار تکرار در آزمایشگاه شرکت آریا تیناژن گرگان انجام شد. تعداد 100 عدد بذر گل‌مغربی‌ در پتری‌دیش‌های 9 سانتی‌متری حاوی دو لایه کاغذصافی واتمن شماره یک قرار داده شد و با پنج میلی‌لیتر آب مقطر مرطوب شدند. تعداد بذرهای جوانه‌زده هر 12 ساعت شمارش گردید. برای محاسبه حداکثر سرعت جوانه‌زنی، منحنی پیشرفت جوانه‌زنی تجمعی در مقابل زمان ترسیم و زمان لازم برای 50 درصد جوانه‌زنی با استفاده از معادله سیگموئیدی سه پارامتری برآورد گردید. برای تعیین دماهای کاردینال، داده‌های مربوط به حداکثر سرعت جوانه‌زنی به‌عنوان تابع متغیر در برابر درجه‌حرارت رسم و با استفاده از معادله‌های درجه‌دو، بتا چهارپارامتری، دوتکه‌ای و دندان‌مانند برازش داده شد. معیارهای انتخاب مدل برتر شامل جذر میانگین مربعات خطا (RMSE)، میانگین مطلق خطا (MAE)، ضریب تبیین تصحیح‌شده (adjusted R2) و معیار اطلاعات آکائیک و آکائیک تصحیح‌شده ( AIC و AICc) بودند.
یافته‌‌ها: نتایج نشان داد که تأثیر دما بر درصد جوانه‌زنی و زمان رسیدن به 50 درصد جوانه‌زنی (سرعت جوانه‌زنی) درسطح پنج درصد معنی‌دار شد. مقایسه آماره‌های جذر میانگین مربعات خطا، ضریب تبیین تصحیح‌شده و معیار اطلاعات آکائیک تصحیح‌شده نشان داد که استفاده از تابع دندان‌مانند جهت توصیف واکنش جوانه‌زنی بذر گل‌مغربی در مقابل دما مناسب‌تر است. براین‌اساس، دماهای پایه، دامنه دماهای مطلوب و سقف موردنیاز برای جوانه‌زنی بذرهای گل‌مغربی به‌ترتیب 7/4، 3/24 تا 7/34 و 2/41 درجه سانتی‌گراد برآورد گردید. تخمین دماهای پایه و سقف بین مدل‌ها متفاوت نبود؛ ولی دمای مطلوب در مدل دوتکه‌ای‌ بیش از سایرین برآورد شد.
نتیجه‌گیری: جوانه‌زنی بذرهای گل‌مغربی از تابع دندان‌مانند تبعیت می‌کند و این نشان می‌دهد که بذرهای قادر هستند در بازه وسیعی از دماها قدرت جوانه‌زنی خود را حفظ نماید. در شرایط زراعی، کشت گل‌مغربی در پاییز و بهار امکان‌پذیر است و این موضوع با رفتار اکولوژیکی این گیاه در طبیعت نیز مطابقت دارد.
کلمات کلیدی: مدل، کمی‌سازی، دمای پایه

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of cardinal temperatures for seed germination of evening primrose (Oenothera biennis L.) using non-linear regression models

نویسندگان [English]

  • manouchehr shahbazi 1
  • ghorbanali nematzadeh 2
  • ahad yamchi 3
  • naser bagherani 3
1 hed of horticulture departeman
2 Head of the Institute of Genetics and Biotechnology
3 faculty member
چکیده [English]

Abstract١
Background and objectives: Evening primrose (Oenothera biennis L.) is medicinal plant of moderate region and its seed containing about 20 to 30 percent of oil. Germination of seed and establishment of seedling are determining factors of crop production ripening time. Models apply for predicting of cumulative germination response and can estimate the cardinal temperatures too. Numerous thermal functions can describe germination response to temperature, amongst them segmented, beta and dent-like functions are most popular. Although many investigations have conducted to determine cardinal temperatures of germination and required thermal time of emergence, there is no sufficient information about evening primrose in Iran from this regard. This investigation has conducted in order to evaluate non-linear regression models to describe the evening primrose seed germination rate response to temperature and estimate its seed germination cardinal temperatures.
Materials and methods: Experiment conducted as Completely Randomized Design (CRD) with four replications at ARYA TINA GENE® Co. laboratory. Evening primrose seeds were placed at eight constant temperatures regimes involves 5, 10, 15, 20, 25, 30, 35 and 40 °C. One hundred evening primrose seeds were placed at 9 cm. petri dishes containing two Whatman No. 1 filter papers and drained with 5 ml. distilled water. Germinated seeds were counted at 12 hr. intervals. To obtain maximum germination rate, cumulative germination progress curve were plotted versus time and the time required to 50 percentile germination estimated using 3 parameters sigmoidal function. Cardinal temperature of germination described using quadratic, four parameters beta, segmented and dent-like functions. The best fitted model selected according to Root Mean Square Error (RMSE), Mean Absolute Error (MAE), adjusted Regression coefficient (adj. R2) values and Akaike Information Criteria (AIC and AICc) indices.
Results: Results showed that temperature effects on germination percentile and time to reach 50 % germination (germination rate) were significant at 5% error level. Comparison of RMSE, MAE, adjusted R2 and AICc criteria improved that evening primrose seed germination response to temperature has the best fitting to dent-like function. According to dent-like model, the base, lower and upper range and ceiling temperatures were 4.7, 24.3 to 34.7 and 41.2 °C, respectively. There were no different estimation of base and ceiling temperatures between models. However, segmented model have overestimated optimum temperature among models.
Conclusion: Evening primrose seed germination followed by dent-like function clear that seeds are able to germinate at a wide range of temperatures. In cultural circumstances, cultivation of evening primrose is possible at autumn or spring which is completely confirmed with behavior of the plant in natural stands.
Keywords: Base temperature, Model, Quantifying

کلیدواژه‌ها [English]

  • base temperature
  • Model
  • quantifying
  1. Alvarado, V. and Bradford, K.J. 2002. A hydrothermal time model explains the cardinal temperature for seed germination. Plant Cell Environ. 25: 1061-1069.
  2. Balandari, A., Rezvani Moghaddam, P. and Nassiri Mahallati, M. 2011. Cardinal temperatures for seed germination of Cichorium pumilum Jacq. Second Congress of Seed Science and Technology, Mashhad, Iran.
  3. Bradford, K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50: 248-260.
  4. Brar, G.S., Gomez, J.F., McMichael, B.L., Matches, A.G. and Taylor, H.M. 1991. Germination of twenty forage legumes as influenced by temperature. Agron. J. 83: 173-175.
  5. Burnham, K. P. and Anderson D. R. 2002. Model selection and multimodel inference: A practical information-theoretic approach. Springer Verlag, New York.
  6. Deng, Y.C., Hua, H.M., Li, J. and  Lapinkase, P. 2001. Studies on the cultivation and uses of evening Primrose (Oenothera spp.) in China. Econom. Bot. 55: 83-92.
  7. Derakhshan, A. and Gherekhloo, J. 2015. Comparison of hydrothermal time models to seed germination modeling of Phalaris minor on the basis of normal, Weibull and Gumbel distributions.  J. Plant Prod. Res. 22: 39-58.
  8. Derakhshan, A., Gherekhloo, J., Vidal, Ribas, A. and DePrado, R. 2014. Quantitative description of the germination of littleseed canarygrass (Phalaris minor) in response to temperature. Weed Sci. 62: 250-257.
  9. Dorry, M.A., Kamkar, B., Aghdasi, M. and Kamshikamar, E. 2014. Determination of the best model to evaluate germination cardinal temperature of Silybum marianum as a medicinal plant. Irannian J. Seed Sci. Technol. 3: 189-200.

10. El-Hafid, R., Blade, S.F. and Hoyano, Y. 2002. Seeding and nitrogen fertilizer effects on the performance of borage (Borago officinalis L.). Indust. Crops Prod. 16:193- 199.

11. Ensminger, P., and Ikuma, H. 1987. Photoinduced seed germination of Oenothera biennis L. Plant Physiol. 85: 879-884.

12. Eshraghi Nejad, M.E., Kamkar, B. and Soltani, A. 2009. Cardinal temperatures and required biological days from sowing to emergence of three millet species (common, foxtail, pearl millet). J. Seed Sci. Technol. 3: 36-43.

13. Fieldsend, A.F. and Morison, J.I.L. 2000. Climatic conditions during seed growth significantly influence oil content and quality in winter and spring evening primrose crops (Oenothera spp.). Indust. Crops Prod. 12: 137–147.

14. Ganjeali, A., Parsa, M. and Amiri-Deh-Ahmadi, S.R. 2011. Determination of cardinal temperatures and thermal time requirement during germination and emergence of chickpea genotypes (Cicer arietinum L.). Iranian J. Pulses Res. 2: 97-108.

15. Garcia-Huidobro, J., Monteith, J.L., and Squier, G.R. 1982. Time, temperature and germination of Pearl Millet (Pennisetum typhoides). J. Exp. Bot. 33: 288-296.

16. Ghaderifar, F., Soltani, A., and Sadeghipour, H.R. 2009. Evaluation of nonlinear regression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar. Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. J. Plant Prod. 16: 1-19.

17. Greiner, S. and Kohl, K. 2014. Growing opening primroses (Oenothera). Front. Plant Sci. 5: 1-12.

18. Hardegree, S. 2006. Predicting germination response to temperature. I. Cardinal temperature models and subpopulation-specific regression. Ann. Bot. 97: 1115-1125.

19. Heidari, Z, Kamkar, B., and Masoud Sinaki, J. 2014. Determination of cardinal temperatures of milk thistle (Silybum marianum L.) germination. Adv. Plant Agric. Res. 1: 1-7.

20. Horrobin, D. F., 1992. Nutritional and medical importance of gamma-linolenic acid. Prog. Lipid Res. 31: 163-94.

21. Jam, Y.W. and Cutforth, H. W. 2004. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. J. Agric. Sci. Technol. 3: 36-43.

22. Kamkar, B., Ahmadi, M., Soltani, A. and Zeinali. E. 2008. Evaluation non-linear regression models to describe a response of wheat emergence rate to temperature. Seed Sci. Biotech. 2: 53-57.

23. Kamkar, B., Jami Al-Ahmadi, M., Mahdavi-Damghani, A., and Villalobos. F.J. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Indust.Crops Prod. 35: 192-198.

24. Kamkar, B., Zolfagharnejad, H. and Khalili, N. 2015. Quantifying of germination rate response to temperature of three sunflower varieties using nonlinear regression models. J. Plant Prod. Res. 22: 119-136.

25. Kebreab, E. and Murdoch, A.J. 1999. A model of effects of a wider range of constant and alternating temperatures on seed germination of four Orobanches species. Ann. Bot. 84: 549-557.

26. Khalaj, H., Allahdadi, I., Iran Nejad, H., Akbari, G.A., Min Bashi, M. and Baghestani, M. A. 2012. Using nonlinear regression approach for prediction of cardinal temperature of canola and four common weeds. J. Agroecol. 2: 21-33.

27. Khalili, N. 2013. Predicting barley (Hordeum vulgare L.) emergence as affected by temperature, moisture and sowing depth. M.Sc. Thesis, Gorgan. Univ. Agric. Sci. Natur. Resour. 60p.

28. Khan, M., Gul, A., and Weber. D.J. 2001. Influence of salinity and temperature on germination of Kochia scoparia. Wetlands Ecol. Manag. 9: 483-489.

29. Moosavi, S.G., Seghatoleslami, M.J., Jouyban, Z., and Ansarinia, E. 2012. Germination and growth parameters of seedlings of Oenothera biennis L. as affected by salinity stress. Tech. J. Engin. Appl. Sci. 2: 123-127.

30. Nadjafi, F., Tabrizi, L., Shabahang J., and Mahdavi Damghani A. M. 2009. Cardinal germination temperatures of some medicinal plant species. Seed Tech. 31: 156-163.

31. Nielsen, O., Chikoye, D., and Streibig, J. C. 2005. Efficacy and costs of handheld sprayers in the subhumid savanna for cogongrass control. Weed Technol. 19: 568-574.

32. Pourreza, J. and Bahrani. A. 2012. Estimating cardinal temperatures of milk thistle (Silybum marianum) seed germination. Am. J. Agric. Environ. Sci. 12: 1485-1489.

33. Saeidnejad, A., Kafi, M. and Pessarakli, M. 2012. Evaluation of cardinal temperatures and germination seeding depth on germination and emergence of spring wheat. Agric. Forest Meteorol. 124: 207-218.

34. Seyyed-Sharifi. R. and Seyyed-Sharifi, R. 2009. The effects of polyethylene glycol on germination and seedling growth of carthamus cultivars. Iranian J. Biol. 21: 400-410.

35. Soltani, A., Galeshi, S., Zeinali, E. and Latifi, N. 2001. Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Sci. Technol. 30: 51-60.

36. Steiner, E. 1956. New aspects of the balanced lethal mechanism in Oenothera. Genet. 4l: 486-500.

37. Tabrizi, L., Koocheki, A., Nassiri Mahallati, M. and Rezvani Moghaddam P. 2008. Germination behaviour of cultivated and natural stands seeds from of Khorasan Thyme (Thymus transcaspicus Klokov) with application of regression models. Iranian J. Field Crops Res. 5: 249-257.

38. Threadgill, P. 1986. Variations in the biennial life history strategy among fifteen ruderal species in an abandoned gravel pit near London, Ontario. Ph.D. Dissertation. University of Westem Ontario, London, Ont. 356 pp.

39. Tsuyuzaki, S. 2006. Survival and changes in germination response of Rumex obtusifolius, Polygonum longisetum and Oenothera biennis during burial at three soil depths. Amer. J. Environ. Sci. 2: 74-78.

40. Wees, D. 2004. Stratification and priming may improve seed germination of purple coneflower, blue-flag iris and evening primrose. Acta Hort. 39: 391-395.

41. Windauer, L., Altuna, A. and Benech-Arnold, R. 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Indust. Crops Prod. 25: 70-74.

42. Yousefi-Daz, M., Soltani, A., Ghaderi-far, F. and Sarparast, R. 2006. Evaluation of non-linear regression models to describe response of emergence rate to temperature in chickpea. Agric. Sci. Technol. 20: 93-102.

43. Zeinali, E., Soltani, A., Galeshi, S. and Sadati, S.J. 2001. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. J. Plant Prod. 3: 23-42.