اثر سطح کمپوست بر جذب برخی عناصر کم مصرف و ارتباط آن با شاخص‏های فیزیولوژیکی زعفران

نوع مقاله : پژوهشی

نویسنده

عضو هیت علمی گروه علوم باغبانی دانشکده کشاورزی دانشگاه بیرجند

چکیده

چکیده
سابقه و هدف: زعفران (Crocus sativus L.) یکی از با ارزش ترین گیاهان دارویی و ادویه‏ای در جهان محسوب می‏شود، که در بیشتر مناطق کشور به علت نیاز آبی کم این محصول و سازگاری مناسب آن با شرایط محیطی، امکان کشت این گیاه وجود دارد.
مدیریت کود یک عامل مهم در موفقیت کشت گیاهان ادویه‌ای و دارویی محسوب می‌شود و عناصر غذایی نقش قابل توجهی در افزایش عملکرد زعفران دارد. کمپوست زباله شهری به عنوان یک کود آلی علاوه بر اینکه حاوی عناصر پر مصرف و کم مصرف می‏باشد، قابلیت دسترسی این عناصر را نیز افزایش می‏دهد. بنابراین این پژوهش به منظور ارزیابی اثر کمپوست بر جذب عناصر غذایی کم مصرف (آهن، روی، مس و منگنز) در اندام های گیاهی زعفران و رابطه آن با صفات زراعی و عملکرد انجام شد.
مواد و روش‏ها: آزمایش در سال‌های زراعی 1395- 1394 در قالب طرح بلوک‏های کامل تصادفی در دانشکده کشاورزی دانشگاه بیرجند اجرا شد. تیمارهای آزمایش شامل چهار سطح کمپوست زباله شهری (0، 5، 10 و 20 تن در هکتار) با سه تکرار بود. صفات اندازه‏گیری شده شامل غلظت عناصر کم مصرف در (خاک، برگ، بنه و کلاله زعفران)، رنگیزه‏های فتوسنتزی (کلروفیلa، b، کاروتنوئید و کلروفیل کل) و صفات زراعی (وزن برگ تر و خشک، عملکرد و متوسط وزن گل تر و عملکرد کلاله خشک) بود.
یافته‏ها: نتایج نشان داد کمپوست زباله شهری تاثیر معنی‏داری بر میزان غلظت عناصر مس، آهن و منگنز (خاک، بنه و کلاله) زعفران نسبت به شاهد داشت، بیشترین غلظت آهن (038/3 و 334/4 میلیگرم بر کیلوگرم)، منگنز (980/1 و 116/3 میلیگرم بر کیلوگرم) و مس (094/1 و 802/1 میلیگرم بر کیلوگرم) گل و بنه در سطح 20 تن در هکتار کمپوست زباله شهری و کمترین میزان این صفات در سطح شاهد به دست آمد. غلظت عنصر روی خاک و برگ نیز با مصرف کمپوست زباله شهری نسبت به شاهد افزایش یافت. بیشترین میزان غلظت عنصر روی (633/1 و 240/1 میلیگرم بر کیلوگرم) خاک و برگ به ترتیب با کاربرد 20 و 10 تن در هکتار کمپوست زباله شهری مشاهده شد. همچنین نتایج بیانگر تاثیر معنی‏دار کمپوست زباله شهری بر کاروتنوئید و کلروفیل کل برگ، عملکرد گل و کلاله زعفران بود. بیشترین عملکرد گل و کلاله در سطح 10 تن در هکتار کمپوست زباله شهری به دست آمد.
نتیجه گیری: به طور کلی نتایج این پژوهش نشان داد، مصرف کمپوست به دلیل وجود عناصر غذایی (پرمصرف و کم ‏مصرف) در ترکیب خود و افزایش جذب آنها توسط زعفران، سبب افزایش صفات زراعی و عملکرد این گیاه در این آزمایش شد، که در مجموع تیمار ۵ تن در هکتار کمپوست، بعنوان بهترین تیمار در این آزمایش مشخص گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of compost levels on micro elements uptake and relationship with physiological traits of saffron (Crocus sativus L.)

چکیده [English]

Abstract
Background and objectives: The most expensive medicinal spicy plant in the Middle East countries is saffron (Crocus sativus L.). Saffron is prepared from dried, bright red stigma .and its value is determined by the color compounds, carotenoids, crocin, and other crocetinglocosyl ester, slightly bitter flavor, picrocrocin, and pleasant aroma, safranal. Nutrition management is one of the main agronomic factor affecting chemical properties and yield of saffron. Municipal waste compost is one natural fertilizer which moreover contain micro elements and compost to be increased ability this elements. Therefore the effects of application of municipal waste compost on uptake micro elements (Fe, Cu, Zn and Mg) in saffron plant and relation with arable characteristics and yield of saffron were evaluated under field conditions.
Materials and methods: This experiment was carried out based on a randomized completely block design with three replications in research farm of University of Birjand, Iran, during cropping year 2015-2016. Treatments were four levels municipal waste compost (0, 5, 10 and 20 t.ha-1). The measured indices were included of concentration of micro elements (soil, leaf, corm and stigma), pigments photosynthesis (chl a, b and total and carotenoids) and arable characteristics (leaf fresh and dry weight, flower fresh yield and dry yield of stigma). Finally, data analysis was done using SAS 9.1 and means were compared by Duncan’s multiple range test at 5% level of probability.
Results: Results showed that municipal waste compost rate improved the concentration of Cu, Fe and Mn of soil, corm and stigma of saffron beside control. The highest concentration Fe (3.038 and 4.334 mg. kg-1), Mn (1.980 and 3.116 mg.kg-1) and Cu (1.094 and 1.802 mg.kg-1) of flower and corm were obtained in plants treated with 20 t.ha-1 municipal waste compost while the lowest values were recorded in the control. Also results showed that municipal waste compost improved the concentration Zn of soil and leaf beside control. The highest concentration Zn (1.633 and 1.240 mg.kg-1) of soil and leaf were obtained in plants treated with 20 and 10 t.ha-1 municipal waste compost. Leaf carotenoids and total chlorophyll, flower and stigma yield were influenced by municipal waste compost treatments. The highest flower and stigma yield were obtained in plants treated with 10 t.ha-1 municipal waste compost.
Conclusion: Thus, results showed that municipal waste compost has significant impact on uptake micro elements of saffron soil and plant. Municipal waste compost hereby improved the arable and yield characteristics of saffron under field conditions.

کلیدواژه‌ها [English]

  • Iron
  • Micro elements
  • Carotenoides
  • Stigma yield
1.Angelopoulos, A., Dichio, B. and Xiloyannis. 1996. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering.J. Exp. Bot. 47: 301. 1093-1100.
2.Bagal, R.U., Leeben-Mack, H.J., Lorenz, W.W. and Dean, F.D.J. 2012. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC genomic. 13: 2-9.
3.Baker, N.L. and Rosenqvist, E. 2004. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55: 403. 1607-1621.
4.Beaudoin-Eagan, L.D. and Throp, T.A. 1985. Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol. 78: 3. 438-441.
5.Bian, S. and Jiang, Y. 2009. Reactive oxygen species, anti oxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci. Hortic. 120: 2. 264-270.
6.Blum, A. and Ebercon, A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21: 43-7.
7.Bongi, G., Mencuccini, M. and Fontanazza, G. 1987. Photosynthesis of olive leaves: effects of light flux density, leaf age, temperature, and peltates and H2O vapor pressure deficit on gas exchange. J. Am. Soc. Hortic. Sci.112: 1. 143-148.
8.Boughaleb, F. and Mhamdi, M. 2011. 2011. Possible involvement of proline and the antioxidant defense system in the drought of three olive cultivars grown under increasing water deficit regimes. Agric. J. 6: 6. 378-391.
9.Cirilli, M., Caruso, G., Gennai, C., Urban, S, Frioni, E., Ruzzi, M., Servili, M., Gucci, R., Poerio, E. and Muleo, R. 2017. The role of polyphenoloxidase, peroxidase and β- Glucosidase in phenolics accumulation in Olea europaea L. fruits under different water regimes. Front. Plant Sci. 8: 717. 1-13.
10.Cui, L., Li, J., Fan, Y., Xu, S. and Zhang, Zh. 2006. High temperature effects on photosynthesis, PSII functionally and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot. Stud. 47: 61-69.
11.Ebtedaie, M. and Shekafandeh, A. 2016. Morpho-physiological changes of two cultivars of pomgrate ‘Rabab’ and ‘Shisheh Gap’ under water stress conditions. Iran. J. Hortic. Sci. Technol. 17: 2. 209-220.
12.Grisafi, F., Bonafede, E., Vecchia, F.F. and Rascio, N. 2004. Some morphological, anatomical, physiological responses of different olive cultivars to high temperatures and drought stress. Acta. Bot. Gallica. 151: 3. 241-253.
13.Hall, K. 2002. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53: 225-245.
14.Han, B. and Bischofa, J.C. 2004. Direct cell injury associated with eutectic crystallization during freezing. Crybiolo. 48: 1. 8-21.
15.Haworth, M., Marino, G., Brunetti, C., Killi, D., Del Carlo, A. and Centritto, M. 2018. The impact of heat stress and water deficit on the photosyntheticand stomatal physiology of Olive(Olea europaea L.)- A case study of the 2017 heat wave. Plants. 7: 76. 1-13.
16.Health, L.R. and Packer, R. 1968. Photo peroxidation in isolated chloroplasts: Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 1. 189-198.
17.Hu, L.X., Hu, T., Zhang, X., Pang, H. and Fu, J.M. 2012. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J. Am. Soc. Hort. Sci. 137: 1. 38-46.
18.IPPC. 2014. Climate change 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment reports of the intergovernmental panel on climate change (Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)). IPPC, Geneva, Switzerland, 12p.
19.Khanpour Ardestani, N., Sharifi, M. and Behmanesh, M. 2015. Effect of methyl jasmonate on antioxidant enzyme activities, pheniloic and flavonoid compounds in Scrophularia steriata cell culture. J. Plant Res. 27: 5. 840-853.
(In Persian)
20.Krause, G.H. and Weis, E.1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu.Rev. Plant Physiol. Plant Mol. Biol.42: 313-349.
21.Lin, J.N. and Kao, C.H. 1998. Effects of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. Bot. Bull. Acad. Sin. 39: 161-165.
22.Lutts, S., Kinet, J.M. and Bouharmont, J. 1995. Changes in plant response of rice varities differing in salinity resistance. J. Exp. Bot. 46: 293. 1843-1852.
23.Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H. and Liang, D. 2008. Effects of high temperature and gene expression of enzymes involved in ascorbate-glutathion cycle in apple leaves. Plant Sci. 175: 761-766.
24.Mancuso, S. 2000. Electrical resistance changes during exposure to low temperature measure chilling and freezing tolerance in olive trees(Olea europeae L.) plants. Plant Cell Environ. 23: 291-299.
25.Mancuso, S. and Azarello, E. 2002. Heat tolerance in olive. Adv. Hort. Sci.16: 3-4. 125-130.
26.Marias, E.D., Meinzer, C.F. and Still, C. 2016. Impact of leaf age and heatstress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea Arabica. Ecol. Evol. 2017: 7. 1297-1310.
27.Martinelli, F., Basile, B., Morelli, G., d,Andria, R. and Tonutti, P. 2012. Effects of irrigation on fruit ripening behavior and metabolic changing in olive. Sci. Hort. 144: 201-207.
28.Mohammadi, H., Zeinanloo, A.A. and Rovshan, A.A. 2008. Thermo adaptation modeling of olive (Olea europaea L.)
in Iran. Phys. Geo. Res. 64: 37-51.(In Persian)
29.Morello, J.R., Romero, M.P., Ramo, T. and Motilva, M.J. 2005. Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci. 168: 65-72.
30.Neugart, S., Krumbein, A. and Zrenner, R. 2016. Influence of light and temperature on gene expression leading to accumulation of specific flavinol glycoside and hydroxycinnamic acid derivates in Kale (Brassica oleraceae var Sabellica). Front. Plant Sci.7: 326. 1-16.
31.Rahnama, A. 2009. Plant Physiology. Pooran Pazhouhesh, 380p. (In Persian)
32.Raymond, J., Rakariyatham, N. and Azanza, J.L. 1993. Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochem.34: 927-931.
33.Rivero, M.R., Ruiz, M.J., Garcia, C.P., Lopez-Lefebre, R.L., Sanchez, E. and Romero, L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 2. 315-321.
34.Snel, J.F.H., Van Kooten, O. and Van Hove, L.W.A. 1991. Assessment of stress in plants by analysis of photosynthetic performance. Trac-element Anal. Chem. 10: 26-30.
35.Sofo, A. 2010. Drought stress tolerance and photoprotection in two varieties of olive tree. Acta. Agr. Scand. B S P.
61: 711-720.
36.Sofo, A., Dichio, B., Xioloyannis, C. and Masia, A. 2004. Effect of different irradiance levels on some antioxidant enzymes on malondialdehyde content during rewatering in olive tree. Pant Sci. 166: 293-302.
37.Tantaswat, P., Melkonian, J., Wolf, W.D. and Steffens, J.C. 2004. Suppression of polyphenol oxidase increases stress tolerance in tomato. Plant Science. 167: 4. 693-703.
38.Vaughn, K.C. and Duke, S.O. 1981. Tentoxin-induced loss of plastidic polyphenol oxidase. Physiol. Plant.
53: 421-428.
39.Vollenweider, P. and Gunthard-Goerg, M.S. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137: 3. 455-465.
40.Yamada, M., Hidaka, T. and Fukamachi, H. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll florescence. Sci. Hort.67: 1-2. 39-48.
41.Zandalinas, S.I., Rivero, M.R., Martin, V., Gomez-Cadenas, A. and Arbona, V. 2016. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in absicic acid levels. BMC Plant Biol. 16: 1. 105-120.
42.Zeinanloo, A.A. 2018. Evalution and selection of superior olive genotypes with high oil and yield. Iran. J.Hort. Sci. Technol. 19: 2. 171-184.(In Persian)
43.Zhao, X X., Huang, L.K., Zhang, X.Q., Li, Z. and Peng, Y. 2014. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities and gene expression in Orchardgrass (Dactylis glomerata L.). Mol .19: 9. 13564-13576.