واکنش بذرهای پرایمینگ شده کلزا در پاسخ به دماهای مختلف

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه گلستان

چکیده

سابقه و هدف: جوانه‌زنی مطلوب بذر؛ دوام، استقرار و عملکرد گیاهان را تضمین می‌کند. بذرهایی که بتوانند در شرایط مختلف محیطی از سرعت و یکنواختی بالای جوانه‌زنی و سبز شدن برخوردار باشند در حصول عملکرد مناسب نقش قابل‌توجهی خواهند داشت. امروزه روش‌های مختلفی برای بهبود ویژگی‌های بذر وجود دارد که یکی از رایج‌ترین این تکنیک‌ها پرایمینگ بذر می‌باشد. پرایمینگ می‌تواند با بهبود درصد، سرعت و یکنواختی جوانه‌زنی و سبز شدن، باعث استقرار گیاه چه های قوی به‌ویژه در تنش‌های محیطی شود و موفقیت در تولید را به دنبال داشته باشد. همچنین شناخت پاسخ فیزیولوژیک بذرهای پرایمینگ شده نسبت به شرایط مختلف محیطی ازجمله تنش دمایی می‌تواند باعث اثربخشی دوچندان این تکنیک شود. بنابراین در این مطالعه واکنش بذرهای پرایمینگ شده ارقام مختلف کلزا به دما بررسی شد.

مواد و روش‌ها: ارقام کلزا مورداستفاده در این مطالعه شامل رقم‌های DK-xpower، تراپر و هایولا50 بود. به‌منظور اعمال تیمار پرایمینگ از دو روش هیدروپرایمینگ و اسموپرایمینگ استفاده شد. آزمون جوانه‌زنی در دماهای 5، 10، 15، 20، 25، 30، 35، 37 و 40 درجه سانتی‌گراد روی بذرهای پرایمینگ شده و بذرهای بدون پرایمینگ انجام و پاسخ درصد و سرعت جوانه‌زنی به دما بررسی شد.

یافته‌ها: نتایج نشان داد که واکنش درصد جوانه‌زنی بذرهای ارقام کلزا در پاسخ به دما و تیمارهای پرایمینگ متفاوت بود و هر رقم رفتار متمایزی از خود نشان داد. اثرات پرایمینگ بر درصد جوانه‌زنی در دماهای پایین در رقم‌های هایولا50 و تراپر بسیار قابل‌توجه بود. همچنین پرایمینگ توانست در هر سه رقم مورد مطالعه، جوانه‌زنی در دماهای بالا را به‌طور معنی‌داری نسبت به بذرهای شاهد افزایش دهد. سرعت جوانه‌زنی نیز تحت تأثیر تیمار پرایمینگ و دما قرار گرفت و در کلیه دماها، سرعت جوانه‌زنی بذرهای پرایمینگ شده بیشتر از بذرهای بدون پرایمینگ بود. در هر سه رقم کلزا، پرایمینگ باعث کاهش دمای پایه (بین 4/0 تا 5/1 درجه سانتی‌گراد) جوانه‌زنی شد. دمای مطلوب جوانه‌زنی نیز به‌ویژه در رقم‌های تراپر و هایولا50، به‌شدت تحت تأثیر تیمار پرایمینگ قرار گرفت. همچنین پرایمینگ باعث افزایش دمای سقف جوانه‌زنی در بذرهای پرایمنگ شده نسبت به بذرهای شاهد (حدود 5-1 درجه سانتی‌گراد) شد. همچنین در اکثر دماها، بین تیمارهای پرایمینگ، تأثیر هیدروپرایمینگ بیشتر از اسموپرایمینگ بود.

نتیجه‌گیری: به‌طورکلی تیمارهای پرایمینگ توانستند باعث بهبود جوانه‌زنی بذرهای ارقام مختلف کلزا در دماهای مختلف شوند. همچنین پرایمینگ با رفع کمون ثانویه در دمای پایین و رفع بازدارندگی جوانه‌زنی در دمای بالا باعث بهبود شاخص‌های جوانه‌زنی در این دماها شد و توانست به‌طور قابل‌توجهی باعث کاهش حساسیت به دما و افزایش دامنه بردباری جوانه‌زنی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The germination responses of primed Canola seeds to varying temperatures

نویسندگان [English]

  • Mohsen Malek 1
  • Benjamin Torabi 1
  • Farshid Ghaderi-Far 1
  • Hamid Reza Sadeghipour 2
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Golestan University
چکیده [English]

Background and objectives: Optimal seed germination guarantees the plant durability, establishment and yield. Uniform and rapid germination and emergence of seeds under various environmental conditions play a significant role in achieving suitable yield. Nowadays, there are several ways to improve seed characteristics, and one of the most commonly used ones is seed priming. Priming can increase the percentage, rate and uniformity of seed germination and emergence. These in turn results in the establishment of strong plant especially under environmental stresses and lead to success in production. In addition, knowledge on the physiological responses of primed seeds to different environmental conditions, including temperature stress, can increase the effectiveness of this technique. Therefore in this study, the reaction of primed seeds from canola cultivars to temperature was investigated.
Materials and Methods: The canola cultivars used in this study included DK-xpower, Traper and Hayola50. Hydroperiming and osmopriming were used as the priming treatments. Germination tests in primed and non-primed seeds were carried out at 5, 10, 15, 20, 25, 30, 35, 37 and 40 °C. Then the response of germination rate and germination percentage to temperature were investigated.
Results: The seed germination percentages of canola cultivars were different in response to temperature and priming treatments, and each cultivar had a distinct behavior. The effects of priming on germination percentage at low temperatures were significant in Hayola50 and Traper cultivars. Also, priming in all the studied cultivars could increase significantly the germination percentages at high temperatures. Germination rates were also affected by priming treatments and temperature. At each temperature, the germination rates of primed seeds were higher than non-primed ones. In all three canola cultivars, priming reduced the base temperature (from 0.4 to 1.5 °C). The optimum temperature was also strongly affected by priming treatments, especially in the Traper and Hayola50 cultivars. Also, ceiling temperatures in primed seeds increased with respect to control seeds (by about 1 to 5°C). In addition, under various temperatures, hydroperiming was more effective than osmopriming.Finally, priming could reduce the temperature sensitivity of seed germination and increase its tolerance to high temperatures.
Conclusion: In general, priming treatments were able to improve seed germination of canola cultivars at different temperatures. Also, priming by either removing the secondary dormancy at low temperatures and /or improved germination under high temperatures was able to improve germination indices at examined temperatures. Finally, priming could reduce the temperature sensitivity of seed germination and increase its tolerance to high temperatures.

کلیدواژه‌ها [English]

  • Dormancy
  • Secondary dormancy
  • Hydropriming
  • Osmopriming
1.Azizi, M., Soltani, A. and Khavari Khorasani, S. 2008. Canola (physiology, agronomy, breeding and biotechnology). Jihad University of Mashhad Press. 230p. (Translated In Persian)
2.Akram-ghaderi, F., Soltani, A. and Sadeghipour, H.R. 2008. Cardinal temperature of germination in medical pumpkin (Cucurbita pepo conver pepo var. styriaca), borago (Borago officinalis L.) and black cumin (Nigella sativa L.). Asian J. Plant Sci. 2: 101-109.
3.Akram-Ghaderi, F., Soltani, E., Soltani A. and Miri, A.A. 2008. Effect of priming on response of germination to temperature in cotton. J. Agric. Sci. Natur. Resour.15: 44-51. (In Persian)
4.Akers, S., Sardar, R. and Motes, J. 1983. Osmoconditioning vegetable seed as a synchronization treatment for germination prior to fluid drilling. Hort. Sci. 18: 567-568.
5.Alvarado, V. and Bradford, K.J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant. Cell. Environ. 25: 1061-1069.
6.Arif, M. 2005. Effect of seed primingon emergence, yield and storabilityof soybean. Ph.D. Thesis. NWFP Agricultural University, Peshavar. 208p.
7.Argyris, J., Truco, M.J., Ochoa, O., McHale, L., Dahal, P., Van Deynze, A., Michelmore, R.W. and Bradford, K.J. 2011. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theor. Appl. Genet. 122: 95-108.
8.Boureima, S., Eyletters, M., Diouf, M., Diop, T.A. and Van Damme, P. 2011. Sensitivity of seed germination and seedling radicle growth to drought stress in sesame (Sesamum indicum L.). Res. J. Environ. Sci. 5: 557-564.
9.Brar, G.S., Gomez, J.F., McMichael, B.L., Matches, A.G. and Taylor, H.M. 1991. Germination of twenty forage legumes as influenced by temperature. Agron. J. 83: 173-175.
10.Butler, L.H., Hay, F.R., Ellis,R.H., Smith, R.D. and Murray, T.B. 2009. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann. Bot.103: 1261-1270.
11.Bazanska, J. and Lewak, S. 1986. Light inhibits germination of rape seeds at unfavorable temperatures. Acta. Physiol. Plant. 8: 145-149.
12.Belmont, J., Sánchez-Coronado,M.E., Osuna-Fernández, H.R., Orozco-Segovia, A. and Pisanty, I. 2018. Priming effects on seed germination of two perennial herb species in a disturbed lava field in central Mexico. Seed Sci. Res. 28: 63-71.
13.Bailly, C., Benamar, A., Corbineau, F. and Coˆme, D. 2000. Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci. Res. 10: 35-42.
14.Bujalski, W. and Nienow, A.W. 1991. Large-scale osmotic priming of onion seeds: A comparison of different strategies for oxygenation. Sci. Hort.46: 13-24.
15.Chojnowski, M., Corbineau, F. and Côme, D. 1997. Physiological and biochemical changes induced in sunflower seeds by osmopriming and subsequent drying, storage and aging. Seed Sci. Res. 7: 323-332.
16.Corbineau, F., Bagniol, S. and Côme, D. 1990. Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel J. Bot. 39: 313-325.
17.Chen, K. and Arora, R. 2013. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 94: 33-45.
18.Castellanos, M.F.Q., Castillo, O.G., Sánchez, P.D., Sánchez, J.M., Carrasco, A.I.G. and Guzmán, J.M. 2018. Relieving dormancy and improving germination of Piquín Chili Pepper (Capsicum annuum var. glabriusculum) by priming techniques. Preprints. 2018. doi: 10.20944/preprints201802.0160.v2.
19.Chen, K. and Arora, R. 2013. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 94: 33-45.
20.Corbineau, F., Rudnicki, R. andCôme, D. 1988. Induction of secondary dormancy in sunflower seeds by high temperature: possible involvement of ethylene biosynthesis. Physiol. Plant. 73: 368-373.
21.Criddle, R.C., Smith, B.N. and Hansen, L.D. 1997. A respiration based description of plant growth rate responses to temperature. Planta.201: 441-445.
22.Cross, H.Z. and Zuber, M.S. 1972. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 64: 351-355.
23.Demir, I. 2003. Effect of controlled hydration treatment on quality of aubergine seeds following storage. Phyton. 43: 307-318.
24.Dutta, S. and Bradford, K. 1994. Water relations of lettuce seed thermos-inhibition. II. Ethylene and endosperm effects on base water potential. Seed Sci. Res. 4: 11-18.
25.Farhoudi, R., Sharifzadeh, F., Poustini, Makkizadeh, M.T. and Kochak Por, M. 2006. The effects of NaCl priming
on salt tolerance in canola (Brassicanapus L.) seedlings grown undersaline conditions. Seed Sci. Techol.35: 754-759.
26.Foti, S., Cosentino, S.L., Patane, C. and D'agosta, G.M. 2002. Effect of osmoconditioning upon seed germination of sorghum (Sorghum bicolor L.) Moench) under low temperatures. Seed Sci. Technol.30: 521-533.
27.Gallardo, M., Derueda, P., Matilla, A. and Sanchezcalle, I. 1994. The relationships between ethylene production and germination of Cicer arietinum seeds. Biol. Plant. 36: 201-207.
28.Ghaderi-Far, F., Alimagham, S.M., Kameli, A.M. and Jamali, M. 2012. Isabgol (Plantago ovata Forsk) seed germination and emergence as affected by environmental factors and planting depth. Int. J. Plant Prod. 6: 185-194.
30.Hardegree, S.P., Jones, T.A. and Vactor, S.S.V. 2002. Variability in Thermal response of Primed and Non‐primed Seeds of Squirreltail [Elymus elymoides (Raf.) Swezey and Elymus multisetus(JG Smith) ME Jones]. Ann. Bot.89: 311-319.
31.Hills, P.N. and van Staden, J. 2003. Thermoinhibition of seed germination. South. Afr. J. Bot. 69: 455-461.
32.Jafar, M.Z., Farooq, M., Cheema, M.A., Afzal, I., Basra, S.M.A., Wahid, M.A., Aziz, T. and Shahid, M. 2012. Improving the performance of wheat by seed priming under saline conditions.J. Agron. Crop Sci. 198: 38-45.
33.Jacobsen, S.E. and Bach, A.P. 1998.The influence of temperature onseed germination rate in quinoa (Chenopodium quinoa) Willd. Seed Sci. Technol. 26: 515-523.
34.McDonald, M.B. 1999. Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27: 177-237.
35.McDonald, M.B. 2000. Seed priming. (Eds. M. Black and J.D. Bewley). Sheffield Academic Press. Pp: 287-325.
36.Mauromicale, G. and Cavallaro, V. 1997. A comparative study of the effects of different compounds on priming of tomato seed germination under suboptimal temperatures. Seed Sci. Technol. 25: 399-408.
37.Nasreen, S., Khan, M.A., Zia, M., Ishaque, M., Uddin, S.A.L.E.E.M., Arshad, M. and Rizvi, Z.F. 2015. Response of sunflower to various pre-germination techniques for breaking seed dormancy. Pakistan J. Bot. 47: 413-416.
38.Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D. and Balestrazzi, A. 2015. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34: 1281-1293.
39.Pill, W.G., Frett, J.J. and Morneau, D.C. 1991. Germination and seedling emergence of primed tomato and asparagus seeds under adverse conditions. Hort. Sci. 26: 1160-1162.
40.Pandita, V.K., Anand, A. and Nagarajan, S. 2007. Enhancement of seed germination in hot pepper following presowing treatments. Seed Sci. Technol. 35: 282-290.
41.Pekrun, C., Hewitt, J.D.J. and Lutman, P.J.W. 1998. Cultural control of volunteer oilseed rape (Brassica napus). J. Agric. Sci. 130: 155-163.
42.Pekrun, C., Lutman, P.J.W. and Baeumer, K. 1997. Germination behavior of dormant oilseed rape seeds in relation to temperature. Weed Res. 37: 419-431.
43.Shaykewich, C.F. 1995. An appraisal of cereal crop phenology modelling. Can. J. Plant Sci. 75: 329-341.
44.Schwember, A.R. and Bradford, K.J. 2005. Drying rates following priming affect temperature sensitivity of germination and longevity of lettuce seeds. Hort. Sci. 40: 778-781.
45.Schwember, AR. and Bradford, K.J. 2010. Gene expression during seed priming. Plant Mol. Biol. 73: 105-118.
46.Soltani, A., Robertson, M.J., Torabi, B., Yousefi-Daz, M. and Sarparast, R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric. Forest Meteorol. 138: 156-167.
47.Soltani, E., Ghaderi-Far, F., Baskin, C.C. and Baskin, J.M. 2016. Problems with using mean germination time to calculate rate of seed germination. Aust. J. Bot. 63: 631-635.‏
48.Suanda, D.S. 2012. Cardinal Temperatures of Brassica sp. and how to determine It. Agrotrop. 2: 33-39.
49.Tarquis, A.M. and Bradford, K.J. 1992. Pre hydration and priming treatments that advance germination also increase the rate of deterioration of lettuce seeds. J. Exp. Bot. 43: 307-317.
50.Thygerson, T., Harris, J.M., Smith, B.N., Hansen, L.D., Pendleton, R.L. and Booth, D.T. 2002. Metabolic response to temperature for six populations of winterfat (Eurotia lanata). Thermochim. Acta. 394: 211-217.
51.Taylor, A.G., Allen, P.S., Bennett, M.A., Bradford, K.J., Burris, J.S. and Misra, M.K. 1998. Seed enhancements. Seed Sci. Res. 8: 245-256.
52.Torabi, B., Adibniya, M. and Rahimi, A. 2015. Seedling emergence response to temperature in safflower: measurements and modeling. Int. J. Plant Prod.9: 393-412.
53.Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K. and Tamura, N. 2008. High temperature induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 146: 1368-1385.
54.Tuan, P.A., Kumar, R., Rehal, P.K., Toora, P.K. and Ayele, B.T. 2018. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Plant Sci. 9. In press.
55.Windauer, L., Altuna, A. and Benech-Arnold, R. 2007. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Ind. Crop. Prod. 25: 70-74.
56.Welbaum, G.E. and Bradford, K.J. 1991. Water relations of seed development and germination in muskmelon (Cucumis melo L.) VI. Influence of priming on germination responses to temperature and water potential during seed development. J. Exp. Bot. 42: 393-399.
57.Xia, Q., Maharajah, P., Cueff, G., Rajjou, L., Prodhomme, D., Gibon, Y. and El-Maarouf-Bouteau, H. 2018. Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant Sci. 269: 118-125.‏
58.Yoong, F.Y., O’Brien, L.K., Truco, M.J., Huo, H., Sideman, R., Hayes, R.,Michelmore, R.W. and Bradford,K.J. 2016. Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of ethylene response factor1 (ERF1). Plant Physiol. 170: 472-488.
59.Zheng, G.H., Wilen, R.W., Slinkard, A.E. and Gusta, L.V. 1994. Enhancement of canola seed germination and seedling emergence at low temperature by priming. Crop Sci. 34: 1589-159.