اثر زمان برداشت، نیتروژن و تراکم کاشت بر عملکرد و برخی صفات فیزیولوژیکی گیاه دارویی پونه معطر (.Mentha pulegium L)

نوع مقاله : پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی دانشگاه گیلان

2 استادیار گروه علوم باغبانی دانشکده کشاورزی دانشگاه گیلان

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی دانشگاه گیلان

4 استادیار گروه علوم باغبانی، دانشکده کشاورزی دانشگاه گیلان

چکیده

سابقه و هدف: پونه معطر از جمله گیاهان خانواده نعناعیان است که هم بصورت سبزی و هم به عنوان گیاه دارویی مصارف متعددی دارد. این گیاه به حالت وحشی در دشت‌های مرطوب و حاشیه جریان‌های آب، حتی داخل آب رشد کرده و غالباً در نواحی مرکزی، جنوبی و غربی آسیا، شمال آفریقا، اتیوپی و جزایر قناری می‌روید. پراکنش این گیاه در ایران در دامنه‌‌های البرز، شمال و شمال شرقی کشور گزارش شده است. بخش‌های هوایی این گیاه به عنوان مواد دارویی و طعم‌دهنده در صنایع غذایی استفاده می‌شود. هدف از این پژوهش حاضر دستیابی به بهترین تیمار کود نیتروژنه، زمان برداشت و تراکم کشت برای گیاه پونه در منطقه رشت بود.
مواد و روش‌ها: این آزمایش به صورت اسپلیت پلات در قالب طرح بلوک‌های کامل تصادفی با سه تکرار مورد ارزیابی قرار گرفت. کرت اصلی زمان برداشت (در دو زمان برداشت)، کرت فرعی شامل نیتروژن در چهار سطح (شاهد (بدون کود)، 50، 100 و 150 کیلوگرم نیتروژن خالص در هکتار) و کرت فرعی فرعی شامل تراکم بوته در سه سطح (10، 14 و 18 بوته در مترمربع) بودند که بر روی صفات عملکردی و برخی صفات فیزیولوژیکی بررسی شدند.
یافته‌ها: نتایج نشان داد که اثرات متقابل نیتروژن، تراکم کاشت و زمان برداشت بر عملکرد خشک اندام هوایی معنی‌داری بود. بیشترین وزن خشک (1909 کیلوگرم در هکتار) در تیمار 150 کیلوگرم نیتروژن خالص در هکتار به همراه تراکم 18 بوته در مترمربع در برداشت اول حاصل شد، و کمترین مقدار (66/396 کیلوگرم درهکتار) هم در تیمار کودی 50 کیلوگرم با تراکم 10 بوته در مترمربع در دومین برداشت بدست آمد. اما درمورد عملکرد تر و سطح برگ نیز اثر متقابل نیتروژن در تراکم کاشت معنی‌دار بود و بیشترین مقدار عملکرد تر(8071 کیلوگرم در هکتار) مربوط به تیمار 150 کیلوگرم نیتروژن با تراکم 18 بوته در مترمربع بود. در خصوص صفات فیزیولوژیک نتایج نشان داد که تیمارهای اعمال شده دارای اثرات معنی‌داری بر میزان درصد اسانس، کلروفیل کل، فنل کل و عناصر نیتروژن و کلسیم داشتند. در این زمینه، بیشترین درصد اسانس (66/2 درصد) مربوط به تیمار نیتروژن 150 کیلوگرم در هکتار با تراکم کاشت 10 بوته در مترمربع بود. همچنین عملکرد اسانس تحت تأثیر اثر متقابل زمان برداشت در تراکم کاشت قرار داشت که بیشترین مقدار هم مربوط به تیمار تراکم 18 بوته در مترمربع در زمان برداشت اول با مقدار 075/25665 میلی‌لیتر در هکتار بود.
نتیجه گیری: از آنجا که در این پژوهش بهترین تیمار زمان برداشت اول و نیتروژن 150 کیلوگرم در هکتار و تراکم 18 بوته در مترمربع بود کاربرد چنین برنامه‌ای برای کاشت گیاه پونه معطر قابل پیشنهاد است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of harvest time, nitrogen and plant density on yield and some physiological traits of pennyroyal (Mentha pulegium L.)

نویسندگان [English]

  • Babolah Faraji 1
  • Amir Sahraroo 2
  • Yousef Hamidoghli 3
  • Jamal-Ali Olfati 4
1 Department of Horticulture, Faculty of Agriculture, University of Guilan
2 Assistant Professor Professor of Horticultural Science Department, University of Guilan
3 Associate Professor, Department of Horticulture, Faculty of Agriculture, University of Guilan, Rasht, Iran
4 Assistant Professor, Department of Horticulture, Faculty of Agriculture, University of Guilan, Rasht, Iran
چکیده [English]

Background and objectives: Pennyroyal (Mentha pulegium L.), Labiatae family, is widely used as a vegetable and medicinal herb. This plant commonly grows in the wet soils such as ditches, riversides and ponds. It is indigenous to the Central, Southern and Western Asia, North Africa, Ethiopia and the Canary Islands. It can also be found in Alborz, North and Northeast regions of Iran. The aerial parts of the plant are used as pharmaceutical and flavoring substances. The aim of this research was to find the best level of nitrogen fertilizer regime, harvesting time and plant density for pennyroyal plant in Rasht area.
Materials and methods: This study was conducted as a split-plot experiment based on randomized complete block design with three replications in Faculty of Agriculture, University of Guilan. The main plots included two harvesting times, the subplots were four levels of Nitrogen fertilizer including control (without fertilizer), 50, 100 and 150 kg ha-1 Nitrogen and the sub-subplots were plant density at 3 levels; 10, 14 and 18 plants m-2.
Results: The results showed that triple interaction of nitrogen, plant density and harvest time had significant effect on dry weight. The highest dry weight (1909 kg ha-1) were obtained by 150 kg ha-1 net nitrogen with the density of 18 plants per m2 for the first harvest. Moreover, 50 kg ha-1 nitrogen fertilizer treatment with 10 plants per m2 showed lowest amount of dry weight (396.66 kg ha-1) in the second harvest time. However, the interaction of nitrogen and planting density revealed significant effect on fresh yield and leaf area. The highest yield (8071 kg ha-1) was related to 150 kg ha-1 nitrogen treatment with the density of 18 plants m-2. About physiological traits, the results claimed that treatments significantly affected the essential oil percentage, total chlorophyll, total phenol, nitrogen and calcium elements. The highest essential oil content (2.66%) was exhibited by the treatment of 150 kg ha-1 nitrogen with plant density of 10 plants m-2. In addition, the essential oil yield was also influenced by the interaction effect of harvest time and planting density. The highest yield (25665/075 milliliters ha-1) was found by the plant density of 18 plants m-2 from the first harvesting time.
Conclusion: Finally, according to our results, the best treatment was first harvesting time, 150 kg ha-1 nitrogen with the density of 18 plants m-2, which can be recommended for the planting program of aromatic pennyroyal.

کلیدواژه‌ها [English]

  • Biomass
  • Essential oil yield
  • total phenol
1.Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, United Nations, FAO, Rome, Italy.
2.Bletsos, F., Thanassoulopoulos, C. and Roupakias, D. 2003. Effect of grafting on growth, yield and verticillium wilt of eggplant. Hort. Sci. 38: 183-186.
3.Boyer, J.S. 1982. Plant productivity and environment. Sci., 218: 443-448.
4.Bremner, J.M. 1965. Total nitrogen, P 1149-1178. In: Black, C.A., D.D. Evans, I.L. White, L.E. Ensminger and F.E. Clark (eds.). Methods of soil analysis. Agron. Monograph 9, Part 2.
5.Castle, W.S. and Krezdorn, A.H. 1975. Effects of citrus rootstocks on root distribution and leaf mineral content of Orlando Tangelo trees. J. Amer. So. Hort. Sci. 100: 1-4.
6.Chaves, M.M., Maroco, J.P. and Pereira, J.S. 2003. Understanding plant responses to drought from genes to whole plant. Funct. Plant Biol. 30: 239-264.
7.Chouka, A.S. and Jebari, H. 1999. Effect of grafting on watermelon on vegetative and root development, production and fruit quality. Acta Hort. 492: 85-93.
8.Clearwater, M.J., Lowe, R.G., Hofstee, B.J., Barclay, C., Mandemaker, A.J. and Blattmann, P. 2004. Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. J. Exp. Bot. 55: 1371-1381.
9.Colla, G. 2014. Vegetable grafting for abiotic stress tolerance: current status and advances through the cost action fa1204. Proceedings of the First International Symposium on Vegetables Grafting, Wuhan, China, 17-21 March 2014.
10.Dalla Costa, L. and Gianquinto, G. 2002. Water stress and water table depth influence yield, water use efficiency, and nitrogen recovery in bell pepper: Lysimeter studies. Austr. J. Agric. Res. 53: 201-210.
11.Dettori, S. 1985. Leaf water potential, stomatal resistance and transpiration response to different watering in almond, peach and pixy plum. II International symposium on irrigation of horticultural crops. Acta Hort. 171: 253-258.
12.Edelstein, M., Burger, Y., Horev, C., Porat, A., Meir, A. and Cohen, R. 2004. Assessing the effect of genetic and anatomic variation of cucurbita rootstocks on vigour, survival and yield of grafted melons. J. Hort. Sci. Biotech. 79: 370-374.
13.Ertek, A., Sxensoy, S., Gedik, I. and Ku¨cxu¨kyumuk, C. 2006. Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions. Agri. Water Manag. 81: 159-172.
14.Fabeiro, C., Martı´n de Santa Olalla, F. and De Juan, J.A. 2002. Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. Agri. Water Manag. 54: 93-105.
15.Ferna´ndez-Garcı´a, N., Martı´nez, V., Cerda,´ A. and Carvajal, M. 2004. Fruit quality of grafted tomato plants grown under saline conditions. J. Hort. Sci. Biotechnol. 79: 995-1001.
16.Food and Agriculture Organization (FAO). 2012. FAOSTAT Data. http://www.fao.org/biotech/stat.asp.
17.Garcı´a-Sa´nchez, F., Syvertsen, J.P., Gimeno, V., Botia, P. and Perez-Perez, J.G. 2007. Responses to looding and drought stress by two citrus rootstock seedlings with different water- use efficiency. Physiologia Plantarum,  30: 532-542.
18.Gluscenko, I.E. and Drobkov, A.A. 1952. Introduction and distribution of radioactive elements in grafted plants and their effect on the development of tomato. Izv. Akad. Nauk S.S.R.R. Ser. Biol. 6: 62-66. (In Russian)
19.Gonzalea, L. and Gonzalez-Vilar, M. 2003. Determination of relative water content. In Handbook of plant ecophysiology techniques, P 207-212 (Eds. J. Manuel and R. Goger). London: Kluwer Academic Publishers.
20.Hu, C.M., Zhu, Y.L., Yang, L.F., Chen, S.F. and Hyang, Y.M. 2006. Comparison of photosynthetic characteristics of grafted and own-root seedling of cucumber under low temperature circumstances. Acta Bot. Boreali-Occidentalia Sin. 26: 247-253.
21.Ikeda, H., Shinji, O. and Takeo, K. 1987. Disease and pest resistance of wild Cucumis species and their compatibility as rootstock for muskmelon, cucumber and watermelon. Bull. Natl. Vrg. Ornam. Tea Research Institute Japan A1. Pp: 173-185.
22.James, L.G. 1988. Principles of farm irrigation system design. John Wiley & Sons Inc., New York, NY.
23.Jang, K.U. 1992. Utilization of sap and fruit juice of Luffa cylindrical L. Research report of Korean Ginseng and Tobacco Institute, Taejan.
24.Jiang, Y. and Huang, N. 2001. Drought and heat stress injury to two cool-season turf grasses in relation to antioxidation metabolism and lipid peroxidation. Crop Sci. 41: 436-442.
25.Karla, Y.P. 1998. Handbook of reference methods for plant analysis. CRC Press Inc., Boca Raton, FL,
Pp: 165-170.
 26.Kashi, A. 2001. Dressing olericulture booklet. TehranUniversity Press. 167p. (In Persian)
27.Kato, T. and Lou, H. 1989. Effect of rootstock on the yield, mineral nutrition and hormone level in xylem sap in eggplant. J. Japan. Soc. Hort. Sci. 58: 345-352.
28.Kaya, C., Higgs, D., Kirnak, H. and Tas, I. 2003. Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well watered and water-stressed conditions. Plant and Soil. 253: 287-292.
29.Kim, S.E. and Lee, J.M. 1989. Effects of rootstocks and fertilizers on the growth and mineral contents in cucumber (Cucumis sativus L.). Res. Collection Inst. Food Dev. Kyung Hee University. Korea. 10: 75-82.
30.Kirnak, H., Cengiz, K., Davi, H. and Sinan, G. 2001. A long term experiment to study the role of mulches in physiology and macro-nutrition in strawberry grown under water stress. Austr. J. Agric. Res. 52: 937-943.
31.Kirnak, H., Tas, I., Kaya, C. and Higgs, D. 2002. Effects of deficit irrigation on growth, yield and fruit quality of eggplant under semiarid conditions. Austr. J. Agric. Res. 53: 1367-1373.
32.Lawlor, D. and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment. 25: 275-294.
33.Lee, J.M. 1994. Cultivation of grafted vegetablesI. Current status, grafting methods and benefits. Hort. Sci. 29: 235-239.
34.Lee, J.M. and Oda, M. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28: 61-124.
35.Leoni, S., Grudina, R., Cadinu, M., Madedu, B. and Carletti, M.G. 1990. The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Hort. 28: 127-134.
36.Leskovar, D.I., Bang, H., Crosby, K.M., Maness, N., Franco, J.A. and Perkins-Veazie, P. 2004. Lycopene, carbohydrates, ascorbic acid and yield components of diploid and triploid watermelon cultivars are affected by deficit irrigation. J. Hort. Sci. Biotech. 79: 75-81.
37.Long, R.L., Walsh, K.B. and Midmore, D.J. 2006. Irrigation scheduling to increase muskmelon fruit biomass and soluble solids concentration. Hort. Sci. 41: 367-369.
38.Miguel Costa, J., Ortuño Maria, F. and Manuela Chaves, M. 2007. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. J. Integ. Plant Biol. 49: 1421-1434.
39.Neilsen, G. and Kappel, F. 1996. ‘Bing’ sweet cherry leaf nutrition is affected by rootstock. Hort. Sci. 31: 1169-1172.
40.Proietti, S., Rouphael, Y., Colla, G., Cardarelli, M., De Agazio, M., Zacchini, M., Moscatello, S. and Battistelli, A. 2008. Fruit quality of mini-watermelon as affected by grafting and irrigation regimes. J. Sci. Food Agric. 88: 1107-1114.
41.Pulgar, G., Villora, G., Moreno, D.A. and Romero, L. 2000. Improving the mineral nutrition in grafted watermelon plants: nitrogen metabolism. Biologia Plantarum. 43: 607-609.
42.Rangana, S. 1997. Mannual for analysis of fruit and vegetable products. Tata McGraw Hill Co.Pvt. Ltd., New Delhi, Pp: 73-76.
43.Rivero, R., MRuiz, J.M., Sanchez, E. and Romero, L. 2003. Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock? Physiol. Plantarum. 117: 44-50.
44.Rogers, G.S. 2006. Development of a crop management program to improve the sugar-content and quality of rockmelons. Horticulture Australia, Project Number: VX00019, 85.
45.Rouphael, Y., Cardarelli, M., Colla, G. and Rea, E. 2008a. Yield, mineral composition, water relations and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Hort. Sci. 43: 730-736.
46.Rouphael, Y., Cardarelli, M., Rea, E. and Colla, G. 2008b. Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany. 63: 49-58.
47.Salehi, R., Kashi, A., Lee, S.G., Huh, Y.C., Lee, J.M., Babalar, M. and Delshad, M. 2009. Assessing the survival and growth performance of Iranian melon to grafting onto Cucurbita rootstocks. Korea. J. Hort. Sci. Technol. 27: 1-6.
48.Salehi, R., Kashi, A., Lee, S.G., Huh, Y.C., Lee, J.M., Bablar, M. and Delshad, M. 2009. Assessing the survival and growth performance of iranian melon to grafting onto cucurbita rootstocks. J. Hort. Sci. 27: 1. 1-6. (In Persian)
49.Salehi, R., Kashi, A., Lee, J.M., Bablar, M., Delshad, M., Lee, S.G. and Huh, Y.C. 2010. Leaf gas exchanges and mineral ion composition in xylem sap of iranian melon affected by rootstocks and training methods. Hort. Sci. 45: 766-770.
50.Salehi, R., Kashi, A., Lee, J.M. and Javanpour, R. 2014. Mineral concentration, sugar content and yield of iranian ‘Khatooni’melon affected by grafting, pruning and thinning. J. Plant Nutr. 37: 1255-1268.
51.Satisha, J., Prakash, G.S., Bhatt, R.M. and Sampath Kumar, P. 2007. Physiological mechanisms of water use efficiency in grape rootstocks under drought conditions. Inter. J. Agric. Res. 2: 159-164.
52.Schwarz, D., Rouphael, Y., Colla, G. and Venem, J.H. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae. 127: 162-171.
53.Sezen, S.M., Yazar, A. and Eker, S. 2006. Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agri. Water Manag. 81: 115-131.
54.Simonne, E.H., Joseph, D.E. and Harrisb, C.E. 1998. Effects of irrigation and nitrogen rates on foliar mineral composition of bell pepper. J. Plant Nutr. 21: 2545-2555.
55.Simsxek, M., Kacxura, M. & Tonkaz, T. 2004. The effects of different irrigation regimes on watermelon (Citrillus lanatus (Thunb.)) yield and yield components under semi-arid climatic conditions. Austr. J. Agric. Res. 55: 1149-1157.
56.Sweeney, J.P., Chapman, V.J. and Hepner, P.A. 1970. Sugar, acids and flavor in fresh fruit. J. Amer. Dietetic Assoc. 57: 432-435.
57.Topcu, S., Kirda, C., Dasgan, Y., Kaman, H., Cetin, M., Yazici, A. and Bacon, M.A. 2007. Yield response and N-fertilizer recovery of tomato grown under deficit irrigation. Europ. J. Agron. 26: 64-70.
58.Traka-Mavrona, E., Koutsika-Sotiriou, M. and Pritsa, T. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci. Hort. 83: 353-362.
59.Xu, C.Q., Li, T.L. and Qi, H.Y. 2005a. Effects of grafting on the photosynthetic characteristics, growth situation and yield of netted muskmelon. China Watermelon and Melon. 2: 1-3.
60.Xu, S.L., Chen, Q.Y., Li, S.H., Zhang, L.L., Gao, J.S. and Wang, H.L. 2005b. Roles of sugar metabolizing enzymes and GA3, ABA in sugars accumulation in grafted muskmelon fruit. Inter. J. Fruit Sci. 22: 514-518.
61.Xu, C.Q., Li, T.L. and Qi, H.Y. 2006a. Effects of grafting on development, carbohydrate content and sucrose metabolizing enzymes activities of muskmelon fruit. Acta Hort. Sin. 33: 773-778.
62.Xu, C.Q., Li, T.L., Qi, H.Y. and Wang, H. 2006b. Effects of grafting on development and sugar content of muskmelon fruit. J. Shenyang Agric. Univ. 37: 378-381.
63.Yetisir, H. and Sari, N. 2004. Effect of hypocotyls morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures. Turk. J. Agric. For. 28: 231-237.
64.Zijlstra, S., Groot, S.P.C. and Jansen, J. 1994. Genotypic variation of rootstocks for growth and production in cucumber. Possibilities for improving the root system by plant breeding. Sci. Hort.
56: 195-196.