جداسازی و شناسایی مورفولوژیک و مولکولی قارچ‌های اندوفیت مهم گیاه بنه(Pistacia mutica) در استان هرمزگان و تاثیر آن‌ها در افزایش تحمل به تنش شوری گیاهچه فلفل رقم کالیفرنیا واندر3

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 کارشناسی‌ارشد گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران

2 نویسنده مسئول، دانشیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران.

3 دانشیار، گروه تحقیقات گیاه پزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی هرمزگان، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرعباس، ایران

چکیده

سابقه و هدف: بهبود منابع غذایی و محصولات کشاورزی در سال‌های اخیر به‌دلیل رشد بالای جمعیت مورد توجه بیشتری قرار گرفته است. تنش شوری به‌عنوان یکی از شایع‌ترین تنش‌های محیطی باعث کاهش عملکرد محصولات کشاورزی به خصوص سبزی‌ها و محصولات زراعی می‌گردد. اندوفیت‌های میکروبی که از مهمترین میکروارگانیسم‌ها محسوب می‌شوند با ایجاد تغییرات ژنتیکی، فیزیولوژیک و اکولـوژیک در گیاهـان میزبان خود، عملکرد آن‌ها را در واحد سطح افزایش می‌دهند و امکان توسعه کشت آن‌ها در خاک‌های شور، خشک یا اقلیم‌هایی با تنش‌های غیـر‌زیسـتی و زیستی را فراهم می‌آورند.
مواد و روش‌ها: به‌منظور شناسایی قارچ‌های اندوفیت در گیاه بنه (Pistacia mutica ) در طی فصل تابستان 1399 نمونه‌برداری از اندام‌های کاملا سالم گیاه شامل پوست تنه اصلی، شاخه‌های جانبی، برگ و ریشه در پنج منطقه از استان هرمزگان صورت گرفت. در این مطالعه تعداد 20 قارچ از درخت بنه جداسازی و خالص‌سازی شد. سپس قارچ‌های خالص‌سازی شده روی محیط کشت PDA که حاوی غلظت‌های شوری (5/0، 1، 2 و 3 میلی‌مولار کلرید سدیم) بودند کشت داده شدند و در انتها سه قارچ که قادر به رشد در بالاترین سطح شوری بودند انتخاب شدند.
یافته‌ها: براساس خصوصیات ریخت‌شناختی و توالی‌یابی ناحیه ITS ریبوزومی سه گونه Aspergillus niger MG890603، MG904988 Paecilomyces formosus و MG907039 Alternaria alternata به‌عنوان قارچ اندوفیت از گیاه بنه در ایران و دنیا شناسایی شدند. به‌منظور تاثیر این قارچ‌های اندوفیت بر تحمل به شوری گیاه فلفل دلمه‌ای آزمایشی به‌صورت فاکتوریل در قالب طرح کاملا تصادفی انجام شد. نتایج نشان داد که کاربرد قارچ‌های اندوفیت P. formosus و A. alternata باعث افزایش طول ریشه گیاهچه فلفل نسبت به عدم تلقیح در تنش شوری 60 میلی‌مولار به‌میزان 5/1 برابر شد. همچنین ترکیب سه قارچ‌ اندوفیت A. niger ، P. formosus و A. alternata باعث افزایش وزن تر و خشک اندام هوایی گیاهچه فلفل نسبت به عدم تلقیح در تنش شوری 60 میلی‌مولار به‌ترتیب به‌میزان 4 و 5/5 برابر شد. بیشترین میزان پراکسیداز در ترکیب قارچ‌های ( P. formosus و A. alternata) و (P. formosus، A. alternata و(A. niger به‌ترتیب به‌میزان 41/51 و 65/48 درصد تحت تنش شوری 60 میلی‌مولار نسبت به شاهد مشاهده شد. در تنش شوری 60 میلی‌مولار بیشترین میزان کاتالاز مربوط به ترکیب قارچی (P. formosus و A. alternata) به‌میزان 54/15 درصد در مقایسه با شاهد بود.
نتیجه‌گیری: به‌‌طور کلی نتایج نشان می‌دهد استفاده از قارچ‌های اندوفیت سبب افزایش رشد گیاه فلفل تحت تنش شوری می‌شو‌د. بنابراین، استفاده از قارچ‌های اندوفیت به‌عنوان جایگزینی با پتانسیل زیاد به‌عنوان محرک‌های رشد گیاه پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Isolation and morphological and molecular identification of important endophyte fungi of Pistacia mutica in Hormozgan province and their effect on increasing salt stress tolerance of California Wonder 3 pepper seedlings

نویسندگان [English]

  • Abbas Kavehnia 1
  • Davood Samsampour 2
  • Majeed Askari Seyahooei 3
1 M.Sc., Dept. of Horticulture Sciences, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.
2 Corresponding Author, Associate Prof., Dept. of Horticulture Sciences, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.
3 Associate Prof., Plant Medicine Research Department, Hormozgan Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran
چکیده [English]

Background and objectives: Salinity stress, as one of the most common environmental stresses, reduces the yield of agricultural products, especially vegetables. Microbial endophytes, which are considered as one of the most important microorganisms, increase their yield per unit area by causing genetic, physiological, and ecological changes in their host plants and provide the possibility of developing their cultivation in salty, dry soils or climates with abiotic and biotic stresses.
Materials and Methods: In order to identify endophytic fungi in pistachio plant (Pistacia mutica), during the summer season of 2019, sampling of completely healthy organs of the plant, including the bark of the main trunk, side branches, leaves and roots, was carried out in five regions of Hormozgan province. In this study, 20 fungi were isolated and purified from (Pistacia mutica) tree. Then the purified mushrooms were cultured on PDA culture medium containing salinity concentrations (0.5, 1, 2, and 3 mM sodium chloride) and finally three mushrooms that were able to grow at the highest salinity level were selected.
Results: Based on the morphological characteristics and sequencing of the ribosomal ITS region, three species of Aspergillus niger MG890603, Paecilomyces formosus MG904988 and Alternaria alternata MG907039 were identified as endophytic fungi from the tuber plant in Iran and the world. In order to investigate the effect of these endophytic fungi on the salinity tolerance of bell peppers, a factorial experiment was conducted in a completely randomized design. The results showed that the application of endophytic fungi P. formosus and A. alternata increased the root length of pepper seedlings by 1.5 double compared to no inoculation at 60 mM salinity stress. Also, the combination of three endophytic fungi, A. niger, P. formosus, and A. alternata, increased the wet and dry weight of pepper seedlings by 4 and 5.5 double, respectively, compared to no inoculation at 60 mM salinity stress. The highest amount of peroxidase in the combination of fungi (P. formosus and A. alternata) and (P. formosus, A. alternata and A. niger) was 51.41 and 48.65%, respectively, under 60 mM salt stress compared to the control. In the salinity stress of 60 mM, the highest amount of catalase related to the fungal combination (P. formosus and A. alternata) was 15.54% compared to the control.
Conclusion: In general, the results show that the use of endophytic fungi increases the growth of pepper plants under salt stress. Therefore, the use of endophytic fungi is suggested as an alternative with high potential as plant growth promoters.

کلیدواژه‌ها [English]

  • Peroxidase
  • Catalase
  • Micro-morphologic
  • Dry weight
1.El-Esawi, M. A., Al-Ghamdi, A. A., Ali, H. M. & Ahmad, M. (2019). Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes, 10, 1-13.
2.Elkelish, A., Qari, S. H., Mazrou, Y. S., Abdelaal, K. A., Hafez, Y. M., Abu-Elsaoud, A. M., Batiha, G. E. S., El-Esawi, M. A. & El Nahhas, N. (2020). Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants, 9, 431-452.
3.Soliman, M., Elkelish, A., Souad, T., Alhaithloul, H. & Farooq, M. (2020). Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiology and Molecular Biology of Plants, 26, 501-511.
4.Jahromi, F., Aroca, R., Porcel, R. & Ruiz-Lozano, J. M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 55, 45-53.
5.Abedinzadeh, M., Etesami, H. & Alikhani, H. A. (2019). Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biorep Technologies, 21, 1-11.
6.Eid, A. M., Salim, S. S., Hassan, S. E. D., Ismail, M. A. & Fouda, A. (2019). Role of endophytes in plant health and abiotic stress management. In Microbiome in plant health and disease. Springer, Singapore. 6, 119-144.
7.Hashim, A. M., Alharbi, B. M., Abdulmajeed, A. M., Elkelish, A., Hozzein, W. N. & Hassan, H. M. (2020). Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants, 9, 2-23.
8.Zamin, M., Fahad, S., Khattak, A. M., Adnan, M., Wahid, F., Raza, A., Wang, D., Saud, S., Noor, M., Bakhat, H. F. & Mubeen, M. (2020). Developing the first halophytic turfgrasses for the urban landscape from native Arabian desert grass. Environ. Science and Pollution Research, 27, 39702-39716.
9.El-Esawi, M. A. & Alayafi, A. A. (2019). Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes, 10, 2-16.
10.Fouda, A. H., Hassan, S. E. D., Eid, A. M. & Ewais, E. E. D. (2015). Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Annals of Agricultural Sciences, 60, 95-104.
11.Zarea, M. J., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F. & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry, 45, 139-146.
12.Ghahfarokhi, R. M. & Goltapeh, M. E. (2010). Potential of the root endophytic fungus Piriformospora indica; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitroJournal of Agricultural Science and Technology, 6, 11-18.
13.Abdollahi, L., Yaghoubian, Y. & Alavi, S. M. (2015). Effect of Piriformospora indica and Trichoderma tomentosum fungi on basil (Ocimum basilicum L.) growth under copper nitrate levels.  Soil Management & Sustainable Production, 5, 13-127.
14.Ansari, M. W., Trivedi, D. K., Sahoo, R. K., Gill, S. S. & Tuteja, N. (2013). A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiology and Biochemistry, 70, 403-410.
15.Azuma, R., Ito, N., Nakayama, N., Suwa, R., Nguyen, N. T., Larrinaga-Mayoral, J. Á., Esaka, M., Fujiyama, H. & Saneoka, H. (2010). Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Scientia Horticulturae, 125, 171-178.
16.Topuz, A. & Ozdemir, F. (2007). Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. Journal of Food Composition and Analysis, 20, 596-602.
17.Rezaie, M., Farhoosh, R., Sharif, A., Asili, J. & Iranshahi, M. (2015). Chemical composition, antioxidant and antibacterial properties of Bene (Pistacia atlantica subsp. mutica) hull essential oil. Journal of Food Science and Technology, 52, 6784-6790.
18.Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D. & Franken, P. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceed. Nation. Academic Science Journal, 102, 13386-13391.
19.Khan, A.L., Hamayun, M., Kim, Y. H., Kang, S. M. & Lee, I. J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49, 852-861.
20.ALKahtani, M. D., Fouda, A., Attia, K. A., Al-Otaibi, F., Eid, A. M., Ewais, E. E. D., Hijri, M., St-Arnaud, M., Hassan, S. E. D., Khan, N. & Hafez, Y. M. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10, 2-18.
21.Woudenberg, J. H. C., Groenewald, J. Z., Binder, M. & Crous, P. W. (2013). Alternaria redefined. Studies in Mycology, 75, 171-212.
22.Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. (1999). Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology, 65, 4715-4724.
23.Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weiss, M., Waller, F. & Kogel, K. H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceed. Nation. Academic Science, 103, 18450-18457.
24.Kar, M. & Mishra, D. (1976). Catalase, peroxidase, and polyphenol oxidase activities during rice leaf senescence. Plant Physiology, 57, 315-319.
25.Hasanuzzaman, M., Nahar, K. & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress. Springer, New York, NY. 3, 25-87.
26.Tiwari, S., Singh, S., Pandey, P., Saikia, S. K., Negi, A. S., Gupta, S. K., Pandey, R. & Banerjee, S. (2014). Isolation, structure determination, and antiaging effects of 2, 3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma, 251, 1089-1098.
27.Qader, M., Zaman, K. A. U., Hu, Z., Wang, C., Wu, X. & Cao, S. (2021). Aspochalasin H1: a new cyclic aspochalasin from Hawaiian plant-associated endophytic fungus Aspergillus sp. FT1307. Mole, 26, 1-10.
28.Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannesi, G. C., Masui, D. C., Ruller, R., Corrêa, B. O., da Silva Brasil, M. & Zanoelo, F. F. (2021). Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere, 18, 2-19.
29.Baazeem, A., Alorabi, M., Manikandan, P., Alotaibi, S. S., Almanea, A., Abdel-Hadi, A., Vijayaraghavan, P., Raj, S. R. F., Kim, Y. O. & Kim, H. J. (2021). Paecilomyces formosus MD12, a Biocontrol Agent to Treat Meloidogyne incognita on Brinjal in Green House. Journal of Fungi, 7, 2-16.
30.Hajizadeh, A., Amini, J., & Abdulzadeh, J. (2014). Introduction of new strains of oak endophyte fungi in Kurdistan province. Rast, 5, 109-122. [In Persian]
31.Van den Brule, T., Lee, C. L. S., Houbraken, J., Haas, P.J., Wösten, H. & Dijksterhuis, J. (2020). Conidial heat resistance of various strains of the food spoilage fungus Paecilomyces variotii correlates with mean spore size, spore shape and size distribution. Food Research International, 137, 1-30.
32.Saleem, A. & El-Shahir, A.A. (2022). Morphological and Molecular Characterization of Some Alternaria Species Isolated from Tomato Fruits Concerning Mycotoxin Production and Polyketide Synthase Genes. Plants, 11, 1-13.
33.Liu, H. F., Liao, J., Chen, X. Y., Liu, Q. K., Yu, Z. H. & Deng, J. X. (2019). A novel species and a new record of Alternaria isolated from two Solanaceae plants in China. Mycological Progress, 18, 1005-1012.
34.Tavakol Noorabadi, M., Babaeizad, V., Zare, R., Asgari, B., Haidukowski, M., Epifani, F., Stea, G., Moretti, A., Logrieco, A. F. & Susca, A. (2020). Isolation, Molecular identification, and mycotoxin production of Aspergillus species isolated from the rhizosphere of sugarcane in the South of Iran. Toxicity, 12, 1-15.
35.Nguyen, T. T. T., Paul, N. C. & Lee, H. B. (2016). Characterization of Paecilomyces variotii and Talaromyces amestolkiae in Korea based on the morphological characteristics and multigene phylogenetic analyses. Mycosphere, 44, 248-259.
36.Moreno-Gavíra, A., Diánez, F., Sánchez-Montesinos, B. & Santos, M. (2020). Paecilomyces variotii as a plant-growth promoter in horticulture. Agronomy, 10, 597-603.
37.Hussein, M. A. & Voigt, K. (2019). Phylogenetic and enzymatic variability of Alternaria species isolated from various substrates in Qena governorate of Upper Egypt. Archives of Phytopathology and Plant Protection, 52, 530-541.
38.Lee, H. B., Patriarca, A. & Magan, N. (2015). Alternaria in food: ecophysiology, mycotoxin production and toxicology. Mycosphere, 43, 93-106.
39.Ramezani, Y., Taheri, P. & Mamarabadi, M. (2019). Identification of Alternaria spp. associated with tomato early blight in Iran and investigating some of their virulence factors. Journal of Plant Pathology, 101, 647-659.
40.Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K. & Singh, H. B. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in Plant Science, 8, 1-6.
41.Sadeghi, F., Samsampour, D., Seyahooei, M. A., Bagheri, A. & Soltani, J. (2020). Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): toward regulating the ascorbate-glutathione cycle. Scientia Horticulturae, 261, 1-15.
42.Li, X., Han, S., Wang, G., Liu, X., Amombo, E., Xie, Y. & Fu, J. (2017). The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass. Frontiers in Microbiology, 8, 1-13.
43.Rho, H., Hsieh, M., Kandel, S. L., Cantillo, J., Doty, S. L. & Kim, S. H. (2018). Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microeconomics, 75, 407-418.
44.Hamayun, M., Hussain, A., Khan, S. A., Kim, H. Y., Khan, A. L., Waqas, M., Irshad, M., Iqbal, A., Rehman, G., Jan, S. & Lee, I. J. (2017). Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Frontiers in Microbiology, 8, 1-13.
45.Farias, G. C., Nunes, K. G., Soares, M. A., de Siqueira, K. A., Lima, W. C., Neves, A. L. R. & de Lacerda, C. F. (2020). Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Brazilian Journal of Microbiology, 51, 243-253.
46.Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D. & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 6, 1-15.
47.Saddique, M. A. B., Ali, Z., Khan, A. S., Rana, I. A. & Shamsi, I. H. (2018). Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. Rice, 11, 1-12.
48.Zhang, S., Gan, Y. & Xu, B. (2019). Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology,19, 1-18.
49.Salope-Sondi, B., Pollmann, S., Gruden, K., Oelmüller, R. & Ludwig-Müller, J. (2015). Improvement of root architecture under abiotic stress through control of auxin homeostasis in Arabidopsis and Brassica crops. Endocy. Cell Research, 26, 100-111.
50.Zaman, K. A. U., Wu, X., Hu, Z., Yoshida, W., Hou, S., Saito, J., Avad, K. A., Hevener, K. E., Alumasa, J. N. & Cao, S. (2021). Antibacterial kaneoheoic acids AF from a Hawaiian fungus Fusarium sp. FM701. Phytochemistry, 181, 112545.
51.Kord, H., Fakheri, B., Ghabooli, M., Solouki, M., Emamjomeh, A., Khatabi, B., Sepehri, M., Salekdeh, G. H. & Ghaffari, M. R. (2019). Salinity-associated microRNAs and their potential roles in mediating salt tolerance in rice colonized by the endophytic root fungus Piriformospora indica. Functional & Integrative Genomics, 19, 659-672.
52.Jogawat, A., Saha, S., Bakshi, M., Dayaman, V., Kumar, M., Dua, M., Varma, A., Oelmüller, R., Tuteja, N. & Johri, A. K. (2013). Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signaling & Behavior, 8, 1-6.
53.Aghaei Dargiri, S., Samsampoor, D., Askari Seyahooei, M. & Bagheri, A. (2021). The Role of the Fungal Endophyte Penicillium Chrysogenum in Tomato Plant under Salinity Stress. Journal of Crop Breeding, 13, 84-94.
54.Khan, A. L., Hamayun, M., Kang, S. M., Kim, Y. H., Jung, H. Y., Lee, J. H. & Lee, I. J. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiology, 12, 1-14.
55.Anith, K. N., Faseela, K. M., Archana, P. A. & Prathapan, K. D. (2011). Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis, 55, 11-17.
56.Ghorbani, M. H., Zeynali, E., Soltani, A. & Galeshi, S. (2004). The effect of salinity on growth, yield and yield components in two wheat cultivars. Journal of Agricultural Sciences and Natural Resources, 10, 5-13.
57.Ghorbani, A., Razavi, S. M., Ghasemi, O. V. & Pirdeshti, H. (2019). Effects of endophyte fungi symbiosis on some physiological parameters of tomato plants under 10-day long salinity stress. Journal of Plant Process and Function, 7, 193-208.
58.Khan, A. L., Waqas, M., Hamayun, M., Al-Harrasi, A., Al-Rawahi, A., & Lee, I. J. (2013). Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiology, 13, 1-13.
59.del Carmen Orozco-Mosqueda, M., del Carmen Rocha-Granados, M., Glick, B. R. & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research, 208, 25-31.
60.Arzani, A. (2008). Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular & Developmental Biology – Plant, 44, 373-383.
61.Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
62.Pan, J., Wang, Q. & Snell, W. J. (2005). Cilium-generated signaling and cilia-related disorders. Laboratory Investigation, 85, 452-463.
63.Asada, K. (2019). Production and action of active oxygen species in photosynthetic tissues. In Causes of photooxidative stress and amelioration of defense systems in plants. CRC pres. 28, 77-104.
64.Dudhane, M. P., Borde, M. Y. & Jite, P. K. (2011). Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition. Notulae Scientia Biologicae, 3, 71-78.
65.Garratt, L. C., Janagoudar, B. S., Lowe, K. C., Anthony, P., Power, J. B. & Davey, M. R. (2002). Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine, 33, 502-511.
66.Bagci, S. A., Ekiz, H., Yilmaz, A. & Cakmak, I. (2007). Effects of zinc deficiency and drought on grain yield of field‐grown wheat cultivars in Central Anatolia. Journal of Agronomy and Crop Science, 193, 198-206.
67.Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L. & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40, 1-10.