مطالعه برخی صفات مورفولوژیک، فیزیولوژیک و فعالیت آنزیم‌های آنتی‌اکسیدانی در گیاه شیرتیغک (Sonchus arvensis L.) تحت تنش شوری

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 نویسنده مسئول، استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

چکیده

چکیده

سابقه و هدف: شیرتیغک (Sonchus arvensis L.) گیاهی دارویی از خانواده آفتابگردان (Asteracea) است که دارای خواص ضد دیابتی، ضد افسردگی و ضد سرطانی می‌باشد.. بحران شور شدن زمینهای کشاورزی به عنوان یکی از مهمترین مشکلات حال حاضر جهان و ایران می‌باشد و شوری به عنوان یک تنش محیطی تاثیر مستقیمی بر بسیاری از خصوصیات گیاه دارد. از آنجایی که اطلاعات کمی در مورد پاسخ گیاه شیرتیغک به تنش شوری وجود دارد، آزمایش حاضر به منظور بررسی اثر شوری بر برخی صفات مورفولوژیکی و فیزیولوژیکی و همچنین فعالیت آنزیم‌های آنتی اکسیدانی در گیاه شیرتیغک انجام شد.

مواد و روش‌ها: آزمایش به صورت طرح کاملا تصادفی با سه تکرار در سال ۱۳۹۸ در گلخانه دانشکده کشاورزی دانشگاه ارومیه انجام گرفت. تنش شوری در چهار سطح (صفر، 50، 100 و 150 میلی مولار نمک NaCl) در مرحله ۶ تا ۸ برگی اعمال و وزن خشک اندام هوایی، وزن خشک ریشه و طول ریشه اندازه گیری شد. همچنین میزان رنگدانه های فتوسنتزی (کلروفیل a، کلروفیل b و کارتنوئیدها)، محتوای پروتئین، محتوای نسبی آب برگ (RWC)، محتوای پرولین و کربوهیدرات،‌ ظرفیت آنتی اکسیدانی (DPPH و FRAP) و فعالیت آنزیم‌های آنتی اکسیدانی شامل کاتالاز (CAT)، آسکوربات پراکسیداز (APX)، سوپراکسید دیسموتاز (SOD) و پراکسیداز (PX)، در برگهای پایینی و میانی مطالعه شد. تجزیه واریانس داده‌های به دست آمده و مقایسه میانگین تیمارها با استفاده از نرم افزار SAS 9.4 انجام گرفت.

یافته‌ها: نتایج نشان داد که با افزایش سطح شوری طول ریشه، وزن خشک ریشه و وزن خشک اندام هوایی بطور معنی‌داری کاهش می-یابد. همچنین با افزایش سطح شوری میزان کلروفیل a و b افزایش ولی میزان کارتنوئید کاهش یافت بطوریکه بیشترین میزان کلروفیل در برگ پایینی در تیمار 150 میلی مولار نمک مشاهده شد. محتوای پروتئین، پرولین و قند محلول با افزایش سطح شوری افزایش یافت بطوریکه بیشترین میزان این پ‍‍ارامترها در برگ میانی در تنش 150 میلی مولار مشاهده شد. بیشترین مقدار ترکیبات فنلی و فلاونوئید کل در تنش 50 میلی مولار مشاهده شد. محتوای یون سدیم (Na+) با زیاد شدن سطح شوری افزایش ولی میزان یون پتاسیم (K+) کاهش نشان داد. فعالیت آنزیم‌های سوپراکسید دیسموتاز، کاتالاز، پراکسیداز و آسکوربات پراکسیداز و فعالیت ظرفیت آنتی اکسیدانتی FRAP و DPPH با افزایش سطح شوری افزایش یافت.

نتیجه گیری: با توجه به نتایج حاصل می‌توان چنین بیان نمود که گیاه شیرتیغک از طریق افزایش برخی اسمولیت ها در شرایط تنش با شوری مقابله می‌کند. همچنین افزایش میزان کلروفیل a و b در سطوح بالای شوری نشان داد که احتمالا گیاه شیرتیغک یک گیاه مقاوم به شوری می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of some morphological, physiological traits and antioxidant enzymes activity in Sonchus arvensis L. under salt stress

نویسندگان [English]

  • Fariba Ghaderi 1
  • Babak Abdollahi Mandoulakani 2
1 Dept. of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
2 Corresponding Author, Professor, Dept. of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran,
چکیده [English]

Introduction

perennial sow-thistle (Sonchus arvensis L.) is a medicinal plant belong to the sunflower family with anti-diabetic, anti-depressant and anti-cancer properties. The crisis of salinization of agricultural lands is considered as one of the most important problems of the world and Iran, and as an environmental stress, it has a direct effect on many plant characteristics under stress. Since there is little information about the response of Sonchus plant to salinity stress, the present experiment was conducted to investigate the effect of salinity on some morphological and physiological traits as well as the activity of antioxidant enzymes under salinity conditions.

Materials and methods

The experiment was conducted as a completely randomized design with three repetitions in 2018 in the greenhouse of the Faculty of Agriculture of Urmia University. Salinity stress was applied at four levels (0, 50, 100 and 150 mM of NaCl salt) at the 6-8 leaf stage, and shoot dry weight, root dry weight and root length were recorded. Also, photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), protein content, relative leaf water content (RWC), proline and carbohydrate contents, antioxidant capacity (DPPH and FRAP) and the activity of antioxidant enzymes including catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (PX) were measured in the lower and middle leaves of the plants. Analysis of variance (ANOVA) for the obtained data and comparison of the means of the treatments using Duncan’s test were implemented in SAS 9.4 software.

Results and discussion

The results showed that root length, root dry weight and shoot dry weight decrease significantly with increasing salinity level. Also, the content of chlorophyll a and b increased in salinity conditions, while salinity decreased the amounts of carotenoids. The highest amount of chlorophyll was observed in the lower leaf under 150 mM NaCl. The content of protein, proline and soluble sugar was enhanced with increasing salinity level; the maximum amount of these parameters was observed in the middle leaf at 150 mM NaCl. The highest amount of total phenolic and flavonoid compounds was observed at the stress level of 50 mM NaCl. The content of sodium ion (Na+) increased with increasing salinity level, while the amount of potassium ion (K+) declined. The activity of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase enzymes, as well as FRAP and DPPH antioxidant capacity increased in salinity conditions.

Conclusion

According to the obtained results, it can be concluded that Sonchus arvensis plant copes with salinity through increasing some osmolytes under stress conditions. Moreover, an enhancement of the amount of chlorophyll a and b at high levels of salinity showed that Sonchus arvensis is probably a salt-tolerant plant.

کلیدواژه‌ها [English]

  • Sonchus arvensis
  • salinity
  • relative water content
  • root dry weight
  • superoxide dismutase
1.Khan, R. A. (2012). Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis. Chemistry Central Journal, 6 (1), 1-7.2.Alrekabi, D. G., & Hamad, M. N. (2018). Phytochemical investigation of Sonchus oleraceus (Family: Asteraceae) cultivated in Iraq, isolation and identification of quercetin and apigenin. Journal of Pharmaceutical Sciences and Research, 10 (9), 2242-2248.3.Aharoni, A., Jongsma, M. A., Kim, T. Y., Ri, M. B., Giri, A. P., Verstappen, F. W., Schwab & Bouwmeester, H. J. (2006). Metabolic engineering of terpenoid biosynthesis in plants. Phytochemistry Reviews, 5, 49-58.4.Guil‐Guerrero, J. L., Giménez‐Giménez, A., Rodríguez‐García, I., & Torija‐Isasa, M. E. (1998). Nutritional composition of Sonchus species (S asperL, S oleraceusL and S tenerrimusL). Journal of the Science of Food and Agriculture, 76 (4), 628-632.5.Li, X. M., & Yang, P. L. (2018). Research progress of Sonchus species. International journal of food properties, 21 (1), 147-157.6.Chen, L., Teng, H., Xie, Z., Cao, H., Cheang, W. S., Skalicka-Woniak, K., ... & Xiao, J. (2018). Modifications of dietary flavonoids towards improved bioactivity: An update on structure–activity relationship. Critical reviews in food science and nutrition, 58 (4), 513-527.7.Yin, H., & Luo, J. (2007). Ticks of small ruminants in China. Parasitology research, 101, 187-189.8.Tajik, N., Tajik, M., Mack, I., & Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European journal of nutrition, 56, 2215-2244.9.Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7 (1), 18.10.Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.11.Bahmani, M., Naghdi, R., & Kartoolinejad, D. (2018). Milkweed seedlings tolerance against water stress: Comparison of inoculations with Rhizophagus irregularis and Pseudomonas putida. Environmental Technology & Innovation, 10, 111-121.12.Gharsallah, C., Fakhfakh, H., Grubb, D., & Gorsane, F. (2016). Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants, 8, plw055.13.Zhang, J., & Kirkham, M. B. (1996). Antioxidant responses to drought in sunflower and sorghum seedlings. New phytologist, 132 (3), 361-373.14.Reddy, A. R., Chaitanya, K. V., Jutur, P. P., & Sumithra, K. (2004). Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental and experimental botany, 52 (1), 33-42.15.Mirvakili, F., Mosleh Arani, A., Sarafraz Ardakani, M. R., & Sodaei-Zadeh, H. (2018). The study of salinity stress influence on some morphological, biochemical and antioxidant responses of Securigera securidaca L. Eco-phytochemical Journal of Medicinal Plants, 6 (1), 32-43.16.Aghdasi, M., Fatemi, M., & Asadi, A. (2019). The impact of salt stress on growth and some biochemical parameters of Echinaceae purpurea L. Journal of Iranian Plant Ecophysiological Research, 14 (53), 1-15.17.Amraee, L., Rahmani, F., & Mandoulakani, B. A. (2020). Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defense system. Functional Plant Biology, 47 (6), 565-575.18.Hosseini, H., Mousavi-Fard, S., Fatehi, F., & Qaderi, A. (2017). Changes in phytochemical and morpho-physilogical traits of thyme (Thymus vulgaris CV Varico 3) under different salinity
levels. Journal of Medicinal plants, 16 (61), 22-33.19.Rasekh, F., Rowshan, V., Vaziri, A., & Kholdebarin, B. (2019). Effects of salinity on biochemical and physiological characteristics of Matricaria chamomillaJournal of Plant Research (Iranian Journal of Biology), 32 (3), 583-595.20.Shao, H. B., Chu, L. Y., Wu, G., Zhang, J. H., Lu, Z. H., & Hu, Y. C. (2007). Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces B: Biointerfaces, 54 (2), 143-149.21.Ou, Z. Q., Schmierer, D. M., Rades, T., Larsen, L., & McDowell, A. (2013). Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. Journal of Pharmacy and Pharmacology, 65 (2), 271-279.22.Baladi, R., Nabipour, M., & Farzaneh, M. (2022). Investigation of some physiological and antioxidant responses of caper (Capparis spinosa L.) plant to salt stress. Environmental Stresses in Crop Sciences, 15 (3), 741-750.  23.Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30 (1), 105-111.24.Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350-382). Academic Press.25.Chapman, H. D., & Pratt, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93 (1), 68.26.Waling, I., Van Vark, W., Houba, V.J. G., & Van der Lee, J.J. (1989). Soil and Plant Analysis, a Series of Syllabi, Part 7: Plant analysis procedures; Wageningen Agriculture University: Wageningen, The Netherlands.27.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1-2), 248-254.28.Bates, L. S., Waldren, R. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.29.Fales, F. (1951). The assimilation and degradation of carbohydrates by yeast cells. Journal of Biological Chemistry, 193 (1), 113-124.30.Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91 (3), 571-577.31.Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16 (3), 144-158.32.Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T., & Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology, 90, 56-62.33.Chance, B., & Maely, A. C. (1955). Assay of catalase and peroxidase methods. Enzymology, 2, 755-784.34.Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22 (5), 867-880.35.Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44 (1), 276-287.36.Safikhan, S., Chaichi, M. R., Khoshbakht, K., Amini, A., & Motesharezadeh, B. (2018). Application of nanomaterial graphene oxide on biochemical traits of Milk thistle (Silybum marianum L.) under salinity stress. Australian Journal of Crop Science, 12 (6), 931-936.37.Boyd, D. C., & Rogers, M. E. (2004). Effect of salinity on the growth of chicory (Cichorium intybus cv. Puna)-a potential dairy forage species for irrigation areas. Australian Journal of Experimental Agriculture, 44 (2), 189-192.38.Saadatmand, A. R., Banihashemi, Z., Maftoun, M., & Sepaskhah, A. R. (2007). Interactive effect of soil
salinity and water stress on growth and chemical compositions of pistachio nut tree. Journal of Plant Nutrition,
30 (12), 2037-2050.39.Sergio, L., De Paola, A., Cantore, V., Pieralice, M., Cascarano, N. A., Bianco, V. V., & Di Venere, D. (2012). Effect of salt stress on growth parameters, enzymatic antioxidant system, and lipid peroxidation in wild chicory (Cichorium intybus L.). Acta physiologiae plantarum, 34, 2349-2358.40.Ghanaatiyan, K., & Sadeghi, H. (2016). Evaluation of the effect of NaCl salt stress on some growth traits and antioxidant enzymes in two chicory (Cichorium intybus) seed ecotypes. Iranian Journal of Seed Sciences and Research, 3 (1), 33-45.41.Yazdani-Biouki, R., Banakar, M., Beyrami, H., Karimi, M., & Soltani Gerd Faramarzi, V. (2021). Estimation of some salinity-related growth characteristics and evaluation of
salinity tolerance threshold of Milk thistle (Silybum marianum L.). Iranian Journal of Irrigation & Drainage, 14 (6), 2037-2046.42.Farahbakhsh, H., Pasandi Pour, A., & Reiahi, N. (2017). Physiological response of henna (Lawsonia inermise L.) to salicylic acid and salinity. Plant Production Science, 20 (2), 237-247.43.Santos, C. V., Campos, A., Azevedo, H., & Caldeira, G. (2001). In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. Journal of Experimental Botany, 52 (355), 351-360.44.Mousavian Kalat, M. (2017). Effects of salinity on some morphological and physiological parameters in four canola (Brassica napus L.) cultivars. Nova Biologica Reperta, 4 (2), 98-106.45.Machado, S., & Paulsen, G. M. (2001). Combined effects of drought and high temperature on water relations of
wheat and sorghum. Plant and Soil, 233, 179-187.46.Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment, 25 (2), 275-294.47.Abdeshahian, M., Nabipour, M., Meskarbashi, M., & Rahdarian, S. (2014). Effect of salinity stress on photosynthesis, stomatal conductance and chlorophyll content of wheat leaf (Triticum aestivum). 13 th Iranian Conference on Agriculture and Plant Breeding and 3rd Iran Seed Science and Technology Conference. Karaj. 5p.48.Rabbani, A., Ardakani, M. R., Naghdi Badi, H., Rezazadeh, S., & Sarajooghi, M. (2021). Study on phytochemical changes of Cannabis sativa L. extract at vegetative growth stage under salinity stress. Eco-phytochemical Journal of Medicinal Plants, 9 (3), 82-93.49.Jing, Y. D., He, Z. L., & Yang, X. E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8, 192-207.50.Harati, E., Kashefi, B., & Matinizadeh, M. (2016). Investigation of reducing detrimantal effects of salt stress on morphological and physiological traits of (Thymus daenensis Celak.) through salicylic acid application.51.Fahmideh, L., Mazarie, A., Madadi, S., & Pahlevan, P. (2022). Comparing the antioxidant enzymes, osmotic regulators and photosynthetic pigments activities of two barley cultivars in Sistan region under salinity-stress conditions. Environmental Stresses in Crop Sciences, 15 (2), 485-499.52.Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163 (5), 1037-1046.53.Weisany, W., Sohrabi, Y., Ahmadi, H., & Abasi, H. (2013). The effect of salinity stress and application of zinc on the chlorophyll content, soluble proteins, growth, yield and the mineral nutrients soybean. Plant Ecosystem (Glysine max L.). 9, 75-96.54.Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48 (4), 555-560.55.Abd EL-Azim, W. M., & Ahmed, S. T. (2009). Effect of salinity and cutting date on growth and chemical constituents of Achillea fragratissima Forssk, under Ras Sudr conditions. Res. J. Agr. Biol. Sci. 5 (6), 1121-1129.56.Calagari, M., Salehi Shanjani, P., & Banj Shafiei, S. (2017). Growth comparison of two poplar species (Populus alba and Populus euphratica) and their hybrid in the saline and non-saline soils. Journal of Plant Research (Iranian Journal of Biology), 30 (1), 143-154.57.Orcutt, D. M., & Nilsen, E. T. (2000). Physiology of plants under stress: Soil and biotic factors (Vol. 2). John Wiley & Sons.58.Emami Bistgani, Z., Siadat, S. A., Bakhshandeh, A., & Ghasemi Pirbalouti, A. (2017). The effect of drought stress and elicitor of chitosan on photosynthetic pigments, proline, soluble sugars and lipid peroxidation in Thymus deanensis Celak. in Shahrekord climate. Environmental Stresses in Crop Sciences, 10 (1), 12-19.59.Garshasbi, F., Fallah, S., & Tadayyon, A. (2016). Effect of source and rate of nitrogen on photosynthesis pigments, proline, soluble sugar, sodium and potassium in purslane (portulaca oleracea) irrigated by saline water. Iranian Journal of water research, 30 (2), 227-241.60.Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911.61.Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48 (12), 909-930.62.Ahmadi, M., Ghasemnezhad, A., Sadeghi Mahoonak, A. R., & Rezaie Asl, A. (2016). The study variation of phytochemical and antioxidant activity of Stevia rebaudiana Bertoni. irrigated with magnetized saline water (Golestan province). Eco-phytochemical Journal of Medicinal Plants, 4 (2), 56-66.63.Shahraki, H., Mahdi Nezhad, N., & Fakheri, B. A. (2021). The effect of synthesis nanosilver by plant extract on morphological and antioxidant properties of Artichoke (Cynara scolymus L.) under salinity stress. Plant Productions, 44 (1), 103-114.64.Cai, Z., Liu, X., Chen, H., Yang, R., Chen, J., Zou, L., ... & Wei, L. (2021). Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae Japonicae Flos under salt stress. Scientific Reports, 11 (1), 3939.65.Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature chemical biology, 5 (5), 283-291.66.Hanen, F., Ksouri, R., Megdiche, W., Trabelsi, N., Boulaaba, M., & Abdelly, C. (2008). Effect of salinity on growth, leaf-phenolic content and antioxidant scavenging activity in Cynara cardunculus L. In Biosaline agriculture and high salinity tolerance (pp. 335-343). Birkhäuser Basel.67.Baher, Z. F., Mirza, M., Ghorbanli, M., & Bagher Rezaii, M. (2002). The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour and Fragrance Journal, 17 (4), 275-277.68.Haslam, E. (1998). Practical polyphenolics: from structure to molecular recognition and physiological action. Cambridge University Press.69.Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C., & Abdelly, C. (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry, 45 (3-4), 244-249.70.Yeshi, K., Yangdon, P., Kashyap, S., & Wangchuk, P. (2017). Antioxidant activity and the polyphenolic and flavonoid contents of five high altitude medicinal plants used in Bhutanese sowa rigpa medicine. Journal of Biologically Active Products from Nature, 7 (1), 18-26.