بررسی اثر باکتری‌های محرک رشد و نیترات پتاسیم بر خصوصیات رشدی و تبادلات گازی لیمو ترش (Citrus aurantifolia ) تحت تنش خشکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی تولید و پس از برداشت گیاهان باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 نویسنده مسئول، استاد گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استاد گروه علوم و مهندسیﺧﺎک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

سابقه و هدف : خشکی یکی از تنش‌های محیطی مؤثر بر رشد گیاهان است که خصوصیات رشدی، مورفولوژیکی و فیزیولوژیکی را تحت تأثیر قرار می‌دهد. این تنش می‌تواند منجر به کاهش فتوسنتز، تعرق و هدایت روزنه‌ای در گیاهان شود که نهایتاً به کاهش عملکرد محصول منجر می‌گردد. باکتری‌های محرک رشد به‌ عنوان یکی از عوامل مؤثر در افزایش مقاومت گیاهان به تنش خشکی شناخته شده‌اند. هدف این پژوهش بررسی اثر همزمان تلقیح سویه‌های مختلف باکتری‌های محرک رشد و محلول‌پاشی نیترات پتاسیم برخصوصیات رشدی و تبادلات گازی گیاه لیمو ترش جهت افزایش مقاومت به تنش خشکی بود.

مواد و روش‌ها: در این مطالعه، اثر باکتری محرک رشد در پنج سطح Enterobacter coleacea E1، Bacillus subtilis CS1، Enterobacter coleacea R33، کنسرسیوم سه سویه یاد شده و شاهد (عدم تلقیح باکتری) همراه با محلول‌پاشی برگی نیترات پتاسیم در دو سطح (0 و 20 گرم در لیتر) تحت سه رژیم آبیاری مختلف (40، 70، 100 درصد پتانسیل تبخیر و تعرق) بر خصوصیات رشدی و تبادلات گازی نهال‌های یک ساله لیمو ترش (Mexican lime) مورد بررسی قرار گرفت. وزن خشک اندام هوایی و سطح برگ یک بار در پایان آزمایش و مابقی پارامترها در سه مقطع زمانی 60، 120 و 180 روز پس از آغاز آزمایش جمع‌آوری شدند. این پژوهش به‌صورت آزمایش فاکتوریل در قالب طرح بلوک های کاملا تصادفی با سه تکرار و در مجموع 90 واحد آزمایشی انجام شد.

یافته ها: نتایج نشان داد که خشکی موجب کاهش قابل توجهی در تبادلات گازی و خصوصیات رشدی نهال های لیموترشگردید. . تلقیح کنسرسیوم سه باکتری همراه با محلول‌پاشی 20 گرم در لیتر نیترات پتاسیم توانست وزن خشک اندام هوایی را 5/36 درصد نسبت به شاهد افزایش دهد. بیشترین سطح برگ به میزان 1111 متر مربع نیز در گیاهان تلقیح‌شده با باکتری R33 و محلول‌پاشی شده با 20 گرم در لیتر نیترات پتاسیم به دست آمد. تلقیح نهال لیموترش با کنسرسیوم سه باکتری همراه با محلول‌پاشی 20گرم در لیتر نیترات پتاسیم به ترتیب منجر به افزایش2/61 و 6/16 درصدی ارتفاع نهال و تعداد برگ در گیاهان آبیاری شده با 40 درصد پتانسیل تبخیر و تعرق گردید. در پایان آزمایش ، میزان فتوسنتز به میزان 9/29 درصد نسبت به آغاز آزمایش کاهش یافت. محلول‌پاشی نیترات پتاسیم به میزان 20 گرم در لیتر و تلقیح با باکتری‌های محرک رشد موجب بهبود فتوسنتز گردید. به‌طور مشخص، فتوسنتز در گیاهان تلقیح شده با Bacillus subtilis CS1 و کنسرسیوم سه سویه همراه با محلول‌پاشی 10 گرم در لیتر نیترات پتاسیم به ترتیب 1/56 و 8/43 درصد نسبت به گیاهان بدون محلول‌پاشی نیترات پتاسیم و عدم تلقیح باکتری در همان رژیم آبیاری افزایش یافت. در رژیم آبیاری 40 درصد پتانسیل تبخیر و تعرق، تلقیح کنسرسیوم سه سویه همراه با محلول‌پاشی 20 گرم در لیتر نیترات پتاسیم توانست هدایت روزنه‌ای را نسبت به گیاهان بدون اعمال تیمار بهبود بخشد (3/333 درصد). همچنین، میزان تعرق در گیاهان تلقیح شده با Bacillus subtilis CS1 به میزان 7/138 درصد نسبت به شاهد افزایش یافت. غلظت دی اکسید کربن زیر روزنه‌ای نیز در گیاهان تلقیح شده با Enterobacter coleacea R33 و تیمار شده با نیترات پتاسیم ، به میزان 4/69 درصد نسبت به شاهد افزایش داشت.

نتیجه گیری: یافته‌ها نشان داد که خشکی تاثیرات منفی معناداری بر خصوصیات رشدی و تبادلات گازی نهال لیموترش داشت. در این آزمایش، محلول‌پاشی با 20 گرم در لیتر نیترات پتاسیم به همراه تلقیح Bacillus subtilis CS1، Enterobacter coleacea R33 و کنسرسیوم سه سویه به عنوان بهترین ترکیب تیماری، که منجر به بهبود شاخص‌های رشدی و تبادلات گازی گردید پیشنهاد می‌شود. این ترکیب می‌تواند به‌عنوان یک راهکار مؤثر در مدیریت تنش خشکی در جهت کاهش اثرات سو تنش خشکی بر گیاه لیمو ترش مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Effect of Plant Growth-Promoting Bacteria and Potassium Nitrate on the Growth Characteristics and Gas Exchange of Lime (Citrus aurantifolia) Under Drought Stress.

نویسندگان [English]

  • Soraya Moallaye Mazraei 1
  • Esmaeil Khaleghi 2
  • Naeimeh Enayatizamir 3
1 Ph.D. Student in Physiology of Production and Postharvest of Horticultural Plants, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Corresponding Author, Professor, Dept. of Horticultural Sciences, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Professor, Dept. of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Background and Objective: Drought is one of the environmental stresses that significantly affects plant growth, impacting morphological and physiological characteristics. This stress can lead to a reduction in photosynthesis, transpiration, and stomatal conductance, ultimately resulting in decreased crop yield. Plant growth-promoting bacteria (PGPB) are recognized as a factor in enhancing plant resistance to drought stress. The objective of this study was to evaluate the simultaneous effect of inoculation with various strains of PGPB and foliar application of potassium nitrate on the growth characteristics and gas exchange of lime (Citrus aurantifolia) to enhance drought resistance.



Materials and Methods: In this study, the effect of PGPB at five levels (Enterobacter cloacae E1, Bacillus subtilis CS1, Enterobacter cloacae R33, a consortium of the three mentioned strains, and a control with no bacterial inoculation) along with foliar application of potassium nitrate at two levels (0 and 20 grams per liter) under three different irrigation regimes (40%, 70%, and 100% evapotranspiration potential) was evaluated on the growth characteristics and gas exchange of one-year-old lime seedlings (Mexican lime). The dry weight of the aerial parts and leaf area were measured once at the end of the experiment, while other parameters were collected at three time points: 60, 120, and 180 days after the start of the experiment. This study was conducted as a factorial experiment in a completely randomized block design with three replications, totaling 90 experimental units.



Findings: The results showed that drought significantly reduced the gas exchange and growth characteristics of lime seedlings. Inoculation with PGPB along with the foliar application of 20 grams per liter of potassium nitrate improved the dry weight of the aerial parts under the highest drought stress, with a 36.5% increase compared to the control. The highest leaf area, measuring 1111 square meters, was observed in plants inoculated with the R33 strain and treated with 20 grams per liter of potassium nitrate. Inoculation of lime seedlings with the bacterial consortium along with the foliar application of 20 grams per liter of potassium nitrate resulted in a 61.2% increase in seedling height and a 16.6% increase in leaf number under the highest drought stress level. At the end of the experiment, the photosynthesis rate decreased by 29.9% compared to the start. Foliar application of 20 grams per liter of potassium nitrate and inoculation with PGPB improved photosynthesis. Specifically, photosynthesis in plants inoculated with Bacillus subtilis CS1 and the three-strain consortium, along with foliar application of 10 grams per liter of potassium nitrate, increased by 56.1% and 43.8%, respectively, compared to plants without potassium nitrate application and no bacterial inoculation under the same irrigation regime. Under the highest stress level, the 40% evapotranspiration potential irrigation regime, inoculation with the three-strain consortium along with foliar application of 20 grams per liter of potassium nitrate improved stomatal conductance by 333.3% compared to untreated plants. Additionally, transpiration in plants inoculated with Bacillus subtilis CS1 increased by 138.7% compared to the control. Sub-stomatal carbon dioxide concentration also increased by 69.4% in plants inoculated with Enterobacter cloacae R33 and treated with potassium nitrate compared to the control.



Conclusion: The findings indicated that drought had significant negative effects on the growth characteristics and gas exchange of lime seedlings. In this experiment, foliar application of 20 grams per liter of potassium nitrate along with inoculation with Bacillus subtilis CS1, Enterobacter cloacae R33, and the three-strain consortium is suggested as the best treatment combination, leading to improved growth indices and gas exchange. This combination could be used as an effective strategy in managing drought stress to mitigate the adverse effects of drought on lime plants.

کلیدواژه‌ها [English]

  • Drought stress
  • Plant growth-promoting bacteria
  • Potassium nitrate
  1. 1.Tripoli, E., La Guardia, M., Giammanco, S., Di Majo, D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food chemistry, 104(2), 466-479.

    2.Ghasemi, S., Hemati, K., Bashiri, S. Z., Ghasem, N. A., & Ghasemi, M. (2011). Quantitation of phenolic compounds in tissues of lime (Citrus aurantifolia) fruit during growth and maturation.

    3.Moradi, S. (2016). Effects of water stress and inoculation with mycorrhizal fungi and symbiotic bacteria on vegetative indices of chickpea (Cicer arietinum L.). Journal of Soil Management and Sustainable Production, 5(3), 129-231.

    4.Amri, E., & Shahsavar, A. R. (2010). Response of lime seedlings (Citrus aurantifolia L.) to exogenous spermidine treatments under drought stress. Australian Journal of Basic and Applied Sciences, 4(9), 4483-4489.

    5.García‐Sánchez, F., Syvertsen, J. P., Gimeno, V., Botía, P., & Perez‐Perez, J. G. (2007). Responses to flooding and drought stress by two citrus rootstock seedlings with different water‐use efficiency. Physiologia Plantarum, 130(4), 532-542.

    1. Thirumurugan, D., Cholarajan, A., Raja, S., & Vijayakumar, R. (2018). An introductory chapter: secondary metabolites. Secondary metabolites-sources and applications, 1, 13.
    2. Campos, H., Trejo, C., Peña-Valdivia, C. B., García-Nava, R., Conde-Martínez, F. V., & Cruz-Ortega, M. d. R. (2014). Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I. Photosynthesis Research, 122, 23-39.
    3. Simonneau, T., Lebon, E., Coupel-Ledru, A., Marguerit, E., Rossdeutsch, L., & Ollat, N. (2017). Adapting plant material to face water stress in vineyards: which physiological targets for an optimal control of plant water status? OENO one, 51(2), 167.

    9.Zufferey, V., Spring, J. L., Verdenal, T., Dienes, A., Belcher, S., Lorenzini, F., Koestel, C., Rösti, J., Gindro, K., & Spangenberg, J. (2017). The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland. Oeno One, 51(1).

    1. Khalvandi, M., Siosemardeh, A., Roohi, E., & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7(1).
    2. Matés, J. M., Pérez-Gómez, C., & De Castro, I. N. (1999). Antioxidant enzymes and human diseases. Clinical biochemistry, 32(8), 595-603.
    3. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany, 91(2), 179-194.
    4. Parvaneh, R., Shahrokh, T., & Meysam, H. S. (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology & Biochemistry, 8(1), 182-193.
    5. Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical reviews in plant sciences, 33(4), 331-349.
    6. Bhat, M. A., Mishra, A. K., Jan, S., Bhat, M. A., Kamal, M. A., Rahman, S., Shah, A. A., & Jan, A. T. (2023). Plant growth promoting rhizobacteria in plant health: a perspective study of the underground interaction. Plants, 12(3), 629.
    7. Bhat, M. A., Mir, R. A., Kumar, V., Shah, A. A., Zargar, S. M., Rahman, S., & Jan, A. T. (2021). Mechanistic insights of CRISPR/Cas‐mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiologia plantarum, 172(2), 1255-1268.
    8. Hasan, A., Tabassum, B., Hashim, M., & Khan, N. (2024). Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2), 59-75.
    9. Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), 3795-3801.
    10. Khan, N., Bano, A., Ali, S., & Babar, M. A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90, 189-203.
    11. Ashry, N. M., Alaidaroos, B. A., Mohamed, S. A., Badr, O. A.,
      El-Saadony, M. T., & Esmael, A. (2022). Utilization of drought-tolerant bacterial strains isolated from harsh
      soils as a plant growth-promoting rhizobacteria (PGPR). Saudi Journal of Biological Sciences, 29(3), 1760-1769.
    12. Nadeem, S. M., Zahir, Z. A., Naveed, M., Asghar, H. N., & Arshad, M. (2010). Rhizobacteria capable of producing ACC‐deaminase may mitigate salt stress in wheat. Soil Science Society of America Journal, 74(2), 533-542.
    13. Lyngwi, N. A., & Joshi, S. (2014). Economically important Bacillus and related genera: a mini review. Biology of useful plants and microbes, 3, 33-43.
    14. Kumar, M., Mishra, S., Dixit, V., Kumar, M., Agarwal, L., Chauhan, P. S., & Nautiyal, C. S. (2016). Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant signaling & behavior, 11(1), e1071004.
    15. Liu, F., Xing, S., Ma, H., Du, Z., & Ma, B. (2013). Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied microbiology and biotechnology, 97, 9155-9164.
    16. Xu, Z., Pan, G., Zhou, H., & Shen, B. (2018). Discovery and characterization of 1-aminocyclopropane-1-carboxylic acid synthase of bacterial origin. Journal of the American Chemical Society, 140(49), 16957-16961.
    17. Radhakrishnan, R., Kang, S. M., Baek, I. Y., & Lee, I. J. (2014). Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. Journal of Plant Interactions,
      9(1), 754-762.
    18. Wanga, S., Wanb, C., Wanga, Y., Chenc, H., Zhou, Z., Fu, H., & Sosebee, R. E. (2004). The characteristics of Na, K and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environments, 56, 525-539.
    19. Aslam, M., Rahman, W. U., Abbas, M., Jafar, H. M. A., Ali, R., Raza, S., Shah, S. A., & Ali, S. (2022). Mitigating the Drought Stress through Potassium Application in Corn. Annals of the Romanian Society for Cell Biology, 26(01), 671-689.
    20. Moaaz Ali, M., Javed, T., Mauro, R. P., Shabbir, R., Afzal, I., & Yousef, A. F. (2020). Effect of seed priming with potassium nitrate on the performance of tomato. Agriculture, 10(11), 498.
    21. Mahmoudi, M., Yousefian, M., Alavi, S. V., & Shahabian, M. (2021). Investigation of Changes in Vegetative Growth, Yield and Qualitative Properties of Thomson Navel Orange Fruit with Emphasis on Optimal Consumption of Manure and Chemical Fertilizers. Journal of Soil Management and Sustainable Production, 11(1), 27-45.
    22. Cochrane, T. T., & Cochrane, T. A. (2009). The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. Plant signaling & behavior, 4(3), 240-243.
    23. Bolat, I., Korkmaz, K., Dogan, M., Turan, M., Kaya, C., Seyed Hajizadeh, H., & Kaya, O. (2024). Enhancing drought, heat shock, and combined stress tolerance in Myrobalan 29C rootstocks with foliar application of potassium nitrate. BMC Plant Biology, 24(1), 140.
    24. Arji, I., Arzani, K., & Ebrahidzadeh, H. (2004). Quantitative study of proline and soluble sugars of five olive (Olea europaea L.) cultivars under drought stress conditions.
    25. Khaleghi, E. (2012). Response of young olive plants cv.Dezful'to Kaolin and water stress and mature olive trees cv.Zard'to Kaolin under specific environmental conditions of Fasa city Ph. D. Thesis.
    26. Bakhtiyarifar, M., Enayatizamir, N., & Mehdi Khanlou, K. (2021). Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers. Archives of Microbiology, 203(2), 513-521.
    27. Lamizadeh, E., Enayatizamir, N., & Motamedi, H. (2016). Isolation and identification of plant growth-promoting rhizobacteria (PGPR) from the rhizosphere of sugarcane in saline and non-saline soil. International Journal of Current Microbiology and Applied Sciences, 5(10), 1072-1083.
    28. Pirhadi, M., Enayatizamir, N., Motamedi, H., & Sorkheh, K. (2016). Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. Biosci. Biotechnol. Res. Commun, 9, 530-538.
    29. Gimeno, V., Díaz-López, L., Simón-Grao, S., Martínez, V., Martínez-Nicolás, J., & García-Sánchez, F. (2014). Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiology and Biochemistry, 83, 308-315.
    30. Danaeifar, A., Khaleghi, E., Zivdar, S., & Mehdikhanlou, K. (2023). Physiological, biochemical, and gene expression of Sour Orange (Citrus aurantium L.) to Iron (II)-Arginine Chelate under salinity, alkalinity, and salt–alkali combined stresses. Scientia Horticulturae, 319, 112146.
    31. Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., & Sakuratani, T. (2002). Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science, 163(1), 117-123.
    32. Tariq, A., Ahmed, A., & Abdullah,
      H. (2020). PGPR Biostimulants as Effective Drought Mitigating Agents.
    33. Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R., Del Cerro, P., Espuny, M., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological research, 169(5-6), 325-336.
    34. Ahmad, S., Wang, G. Y., Muhammad, I., Zeeshan, M., & Zhou, X. B. (2022). Melatonin and KNO3 application improves growth, physiological and biochemical characteristics of maize seedlings under waterlogging stress conditions. Biology, 11(1), 99.
    35. Hassanpouraghdam, M. B., Vojodi Mehrabani, L., Kheiri, M., Chrysargyris, A., & Tzortzakis, N. (2022). Physiological and biochemical responses of Tanacetum balsamita L. to the foliar application of Dobogen biostimulant, glucose and KNO3 under salinity stress. Scientific reports, 12(1), 9320.
    36. Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological research, 184, 13-24.
    37. Farooqi, Z. U. R., Ayub, M. A.,
      ur Rehman, M. Z., Sohail, M. I., Usman, M., Khalid, H., & Naz, K. (2020). Regulation of drought stress in plants. In Plant life under changing environment (pp. 77-104). Elsevier.
    38. Fawzy, Z., El-Nemr, M., & Saleh, S. (2007). Influence of levels and methods of potassium fertilizer application on growth and yield of eggplant.
    39. Arafa, S. A., Attia, K. A., Niedbała, G., Piekutowska, M., Alamery, S., Abdelaal, K., Alateeq, T. K., AM Ali, M., Elkelish, A., & Attallah, S. Y. (2021). Seed priming boost adaptation in pea plants under drought stress. Plants, 10(10), 2201.
    40. Akhtar, N., Ilyas, N., Hayat, R., Yasmin, H., Noureldeen, A., & Ahmad, P. (2021). Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiology and Biochemistry, 166, 160-176.
    41. Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current opinion in biotechnology, 21(2), 197-203.
    42. Ngumbi, E., & Kloepper, J. (2016). Bacterial-mediated drought tolerance: current and future prospects. Applied Soil Ecology, 105, 109-125.
    43. Faizan, M., Hayat, S., & Pichtel, J. (2020). Effects of zinc oxide nanoparticles on crop plants: A perspective analysis. Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development,
      83-99.
    44. Chaves, M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany, 103(4), 551-560.
    45. Lawlor, D. W., & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of botany, 103(4), 561-579.
    46. Drake, J. E., Power, S. A., Duursma, R. A., Medlyn, B. E., Aspinwall, M. J., Choat, B., Creek, D., Eamus, D., Maier, C., & Pfautsch, S. (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agricultural and Forest Meteorology, 247, 454-466.
    47. Liu, F., Ma, H., Peng, L., Du, Z., Ma, B., & Liu, X. (2019). Effect of the inoculation of plant growth-promoting rhizobacteria on the photosynthetic characteristics of Sambucus williamsii Hance container seedlings under drought stress. AMB Express, 9, 1-9.
    48. Bellasio, C., Quirk, J., & Beerling, D. J. (2018). Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Science, 274, 181-192.
    49. Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., & Doležal, K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. International journal of molecular sciences, 19(12), 4045.
    50. Chernyad'Ev, I. (2000). Ontogenetic changes in the photosynthetic apparatus and effects of cytokinins. Applied Biochemistry and Microbiology, 36, 527-528.
    51. Kang, S., Zhang, L., Liang, Y., Hu, X., Cai, H., & Gu, B. (2002). Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agricultural water management, 55(3), 203-216.
    52. Ouledali, S., Ennajeh, M., Ferrandino, A., Khemira, H., Schubert, A., & Secchi, F. (2019). Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. South African Journal of Botany, 121, 152-158.
    53. Brilli, F., Pollastri, S., Raio, A., Baraldi, R., Neri, L., Bartolini, P., Podda, A., Loreto, F., Maserti, B. E., & Balestrini, R. (2019). Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. Journal of plant physiology, 232, 82-93.
    54. Muhammad Zafar-ul-Hye, M. Z. U. H., Farooq, H. M., Zahir, Z. A., Mubshar Hussain, M. H., & Amjad Hussain,
      A. H. (2014). Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress.
    55. Barnawal, D., Bharti, N., Pandey, S. S., Pandey, A., Chanotiya, C. S., & Kalra, A. (2017). Plant growth‐promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia plantarum, 161(4), 502-514.
    56. Salem, A., Khandaker, M. M., Mahmud, K., Alsufyani, S. J., Majrashi, A. A., Rashid, Z. M., Alenazi, M. M., Osman, N., & Badaluddin, N. A. (2024). Enhancing photosynthesis and root development for better fruit quality, aroma, and lessening of radioactive materials in key lime (Citrus aurantifolia) using Trichoderma harzianum and Bacillus thuringiensis. Plant Physiology and Biochemistry, 206, 108295.
    57. Tahira Abbas, T. A., Saeed Ahmad, S. A., Muhammad Ashraf, M. A., Shahid, M., Muhammad Yasin, M. Y., Balal, R., Pervez, M., & Sumaira Abbas, S. A. (2013). Effect of humic and application at different growth stages of kinnow mandarin (Citrus reticulata Blanco) on the basis of physio-biochemical and reproductive responses.
    58. Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370-7390.
    59. Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in microbiology, 8, 2104.
    60. Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530.
    61. Battie-Laclau, P., Delgado-Rojas, J. S., Christina, M., Nouvellon, Y., Bouillet, J. P., de Cassia Piccolo, M., Moreira,
      M. Z., de Moraes Goncalves, J. L., Roupsard, O., & Laclau, J. P. (2016). Potassium fertilization increases
      water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. Forest Ecology and Management, 364, 77-89.
    62. Battie-Laclau, P., Laclau, J. P., Piccolo, M. d. C., Arenque, B. C., Beri, C., Mietton, L., Muniz, M. R. A., Jordan-Meille, L., Buckeridge, M. S., & Nouvellon, Y. (2013). Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant and soil, 371, 19-35.
    63. Schulze, E. D., Turner, N. C., Nicolle, D., & Schumacher, J. (2006). Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiology, 26(4), 479-492.
    64. Müller, H. M., Schäfer, N., Bauer, H., Geiger, D., Lautner, S., Fromm, J., Riederer, M., Bueno, A., Nussbaumer, T., & Mayer, K. (2017). The desert plant Phoenix dactylifera closes stomata via nitrate‐regulated SLAC 1 anion channel. New Phytologist, 216(1), 150-162.
    65. Shao, H. B., Chu, L. Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R., & Shao, M. A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical reviews in biotechnology, 29(2), 131-151.
    66. Chieb, M., &Gachomo, E. W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC plant biology, 23(1), 407.
    67. Wang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., Wang, Y. P., & Guo, J. H. (2012). Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains.
      Plos one
      , 7(12), e52565.