1.Hamilton, A. C. (2004). Medicinal plants, conservation and livelihoods. Biodiversity & Conservation, 13, 1477-1517.
2.Kerem, Z., Lev-Yadun, S., Gopher, A., Weinberg, P., & Abbo, S. (2007). Chickpea domestication in the Neolithic Levant through the nutritional perspective. Journal of Archaeological Science, 34(8), 1289-1293.
3.Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275-304.
4.Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.
5.Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., & Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566, 1223-1234.
6.Keymer, D. P., & Lankau, R. A. (2017). Disruption of plant–soil–microbial relationships influences, plant growth. Journal of Ecology, 105(3), 816-827.
7.Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance, Frontiers in Plant Science, 10, 1068.
8.Kobae, Y. (2019). The Infection Unit: An overlooked conceptual unit for arbuscular mycorrhizal function. Root Biology-Growth, Physiology, and Functions, 1-13.
9.Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571-586.
10.Felestrino, É. B., Santiago, I. F., Freitas, L. D. S., Rosa, L. H., Ribeiro, S. P., & Moreira, L. M. (2017). Plant growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Frontiers in microbiology, 8, 172.
11.Abbaspour, H. (2010). Investigation of the effects of vesicular arbuscular mycorrhiza on mineral nutrition and growth of Carthamus tinctorius under salt stress conditions, Russian Journal of Plant Physiology, 57(4), 526-531.
12.Shahraki, A., & Ranjbar, M. M. S. M. (2022). The effect of rhizospheric bacteria on the physiological and biochemical characteristics of safflower (Carthamus tinctorius). Nova Biologica Reperta, 9(3), 213-221. [In Persian]
13.Ghouchani, R., Abbaspour, H., Rusta, M. J., SaidiSar, S., & Saed-Moucheshi, A. (2014). Mycorrhizal inoculation can decreases negative effect of salinity on safflower varieties, International Journal of Biosciences, 5(11), 76-85.
14.Xu, Y., Fan, Y., Yu, Y. H., Xu, C. Y., & Ge, Y. (2014). Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress. Chinese Journal of Ecology, 33(12), 3395.
15.Lack, S., Ghooshchi, F., & Hadi, H. (2013). The effect of crop growth enhancer bacteria onyield and yield components of safflower (Carthamus tinctorius L.). International Journal of Farming and Allied Sciences, 2(20), 809-815.
16.Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcón, R. (2003). Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza, 13, 249-256.
17.Hatami, N., Mehrabi Gohari, E., Tashakorizadeh, M., & sedaghati, E. (2024). Studying the effect of drought stress and arbuscular mycorrhizal fungi on some morphological and physiological traits of Artemisia dracunculus. Genetics and Plant Breeding, 1(1), 97-118. [In Persian]
18.Bagheri, V., Shamshiri, M. H., Alaei, H., & Salehi, H. (2019). The role of inoculum identity for growth, photosynthesis, and chlorophyll fluorescence of zinnia plants by arbuscular mycorrhizal fungi under varying water regimes. Photosynthetica, 57(2).
19.Belete, D. A., Tewachew, A., Bitew, M., & Mulualem, T. (2022). Correlation and path coefficient studies for yield and its components of upland rice (Oryza sativa L.) in North Western Ethiopia. Journal of Scientific Agriculture, 6, 14-19.
20.Park, J. R., Seo, J., Park, S., Jin, M., Jeong, O. Y., & Park, H. S. (2023). Identification of potential QTLs related to grain size in rice. Plants, 12(9), 1766.
21.Begum, M., Rai, V. R., & Lokesh, S. (2003). Effect of plant growth promoting rhizobacteria on seed borne fungal pathogens in okra, Indian Phytopathology, 56(2), 156-158.
22.Canbolat, M. Y., Bilen, S., Çakmakçı, R., Şahin, F., & Aydın, A. (2006). Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils, 42, 350-357.
23.Entesari, M., Sharifzadeh, F., Ahmadzadeh, M., & Farhangfar, M. (2013). Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. International Journal of Agronomy and Plant Production, 4(4), 610-619.
24.Cardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. (2022). Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants, 11(3), 259.
25.Raei, Y., Shariati, J., & Weisany, W. (2015). Effect of biological fertilizers on seed oil, yield and yield components of safflower (Carthamus tinctorius L.) at different irrigation levels. The Journal
of Agricultural Science. 25, 65-84. [In Persian]
26.Tonguç, M., Önder, S., Mutlucan, M., & Erbaş, S. (2023). Role of rhizobacteria inoculations on agronomic and quality characteristics of safflower (Carthamus tinctorius L.) under unfertilized conditions. Turkish Journal of Field Crops, 28(1), 79-86.
27.Ekin, Z. (2020). Co-application of humic acid and bacillus strains enhances seed and oil yields by mediating nutrient acquisition of safflower (Carthamus tinctorius L.) plants in a semi-arid region. Applied Ecology and Environmental Research, 18, 1883-1900.
28.Santoyo, G., Guzmán-Guzmán, P., Parra-Cota, F. I., Santos-Villalobos, S. D. L., Orozco-Mosqueda, M. D. C., & Glick, B. R. (2021). Plant growth stimulation by microbial consortia. Agronomy, 11(2), 219.
29.Khan, M. Y., Nadeem, S. M., Sohaib, M., Waqas, M. R., Alotaibi, F., Ali, L., & Al-Barakah, F. N. (2022). Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Frontiers in Microbiology, 13, 958522.
30.Nosheen, A., Bano, A., Ullah, F., Farooq, U., Yasmin, H., & Hussain, I. (2011). Effect of plant growth promoting rhizobacteria on root morphology of Safflower (Carthamus tinctorius L.). African Journal of Biotechnology, 10(59), 12638-12649.
31.Prasad, R. D., Navaneetha, T., & Rao, L. V. (2016). Plant growth promotion and induced defense response in safflower (Carthamus tinctorius L.) by Trichoderma. Journal of Biological Control, 40-48.
32.Dimitrov, S. G., & Sabluk, V. T. (2022). Formation of the leaf surface area of agricultural crops depending on the mass of the root system according to its mycorrhization. Bioenergy, 1-2, 29-31.
33.Li, X., Zhao, R., Li, D., Wang, G., Bei, S., Ju, X., & Zhang, J. (2023). Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil. Microbiome, 11(1), 45.
34.Lies, A., Delteil, A., Prin, Y., & Duponnois, R. (2018). Using mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. Role of rhizospheric microbes in soil: volume 1: stress management and agricultural sustainability, 277-298.
35.Abdalla, M., & Ahmed, M. A. (2021). Arbuscular mycorrhiza symbiosis enhances water status and soil-plant hydraulic conductance under drought. Frontiers in Plant Science, 12, 722954.
36.Meng, P., Chen, W., Feng, H., Zhang, S., Wang, J., Ma, W., & Wang, C. (2022). Effect of inoculation with arbuscular mycorrhizal fungi on growth of Catalpa bungei. New Zealand Journal of Forestry Science, 52.
37.Beltayef, H., Saidi, W., Hajri, R., Mechri, M., & Melki, M. (2023). Mycorrhizal fungi inoculation effect on plant growth and phosphorus metabolism of snap bean variety" Contender. GSC Advanced Research and Reviews, 15(03), 201-206.
38.Lotfollahi, A., Bolandnazar, S., Aliasgharzad, N., Khoshru, B., & Siami, A. (2021). Effects of Inoculation with Arbuscular Mycorrhiza and Mycorrhiza-Like Fungi on Growth and Phosphorus Uptake of Coriander. Journal of Agricultural Science and Sustainable Production, 31(1), 87-101. [In Persian]
39.Teimory, H., Ghabooli, M., & Movahedi, Z. (2021). Effects of different inoculation methods of Serendipita indica on some morphophysiological, biochemical, and yield traits of tomato under drought stress. Iranian Journal of Plant Biology, 13(2), 1-22. [In Persian]
40.Naseri, R., Barary, M., Zarea, M. J., Khavazi, K., & Tahmasebi, Z. (2017). Effect of plant growth promoting bacteria and Mycorrhizal fungi on growth and yield of wheat under dryland conditions. Journal of Sol Biology, 5(1), 49-66. [In Persian]
41.Ghorbani, A., Pirdashti, H., & Ramezani, M. (2016). Effect of endophyte fungal symbiosis of Piriformospora india on morphological character and photosynthesis pigments in tomato (Solanum lycopersicum L.). New Cellular and Molecular Biotechnology Journal, 6(24), 57-64.
[In Persian]
42.Jahandideh Mahjen-Abadi, V. A., Sepehri, M., & Rahmani Iranshahi, D. (2014). Effect of Piriformospora indica fungus inoculation on uptake and transportation of some nutrients in two wheat cultivars. Journal of Soil Management and Sustainable Production, 4(3), 155-173. [In Persian]
43.Muhammad, M., Isnatin, U., Soni, P., & Adinurani, P. G. (2021). Effectiveness of mycorrhiza, plant growth promoting rhizobacteria and inorganic fertilizer on chlorophyll content in Glycine max L. cv. Detam-4 Prida, the 1st International Conference on Bioenergy and Environmentally Sustainable Agriculture Technology, 226.
44.Budi, S. W., Arty, B., Wibowo, C., & Sukendro, A. (2020). Influence of arbuscular mycorrhizal fungi and soil ameliorants on the mycorrhizal colonization, Chlorophyll content, and performance growth of Two tropical tree seedlings grown in soil media with high aluminum content. Malaysian Applied Biology, 49(1), 41-53.
45.Deshmukh, R. B., Mane, S. G., Phatake, Y. B., Marathe, R. J., Sandhya, Sudhakar, D., Dange, Bharat, & Shinde. (2023). Effect of arbuscular mycorrhizal fungi on growth and development of Zea mays L. Research Journal of Biotechnology, 18(7), 16-22.
46.Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., & Ahammed, G. J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 8, 251.
47.Ran, Q., Zhang, S., Arif, M., Yin, X., Chen, S., & Ren, G. (2024). Effects of arbuscular mycorrhizal fungi on carbon assimilation and ecological stoichiometry of maize under combined abiotic stresses. Journal of Plant Ecology, 17(2), 10.
48.Peng, Z., Zulfiqar, T., Yang, H., Wang, M., & Zhang, F. (2024). Effect of Arbuscular Mycorrhizal Fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress. Scientific Reports, 14(1), 8633.
49.Kebede, T. G., Birhane, E., Ayimut, K. M., & Egziabher, Y. G. (2023). Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels. Journal of Arid Land, 15(8), 975-988.
50.Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S., & Sa, T. (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Frontiers in Plant Science, 10, 457.