شناسایی زیرواحدهای گلوتنین HMW در ارقام و لاین‌های امیدبخش گندم نان با استفاده از نشانگرهای STS

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 نویسنده مسئول، استاد دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

چکیده مبسوط:

سابقه و هدف: بهبود عملکرد محصولات زراعی از دو جنبه کمیتی و کیفیتی همواره مهمترین هدف اصلاحگران بوده است. در گندم، کیفیت نانوایی عمدتا تابع میزان و نوع پروتئین‌های تشکیل‌دهنده گلوتن بویژه گلوتنین می‌باشد. هدف این مطالعه تعیین کیفیت نانوایی با استفاده از نشانگرهای STS مرتبط با زیرواحدهای با وزن مولکولی بالا گلوتنین (HMWG) و همچنین مقایسه عملکرد دانه‌ و برخی صفات مورفولوژیک ژنوتیپ‌های‎ گندم در استان گلستان بود.

مواد و روش‌ها: بذور 30 ژنوتیپ گندم شامل ارقام رایج و لاین‌های امیدبخش گندم از طرح انتخاب ارقام مشارکتی استان گلستان در مزرعه دانشگاه علوم کشاورزی و منابع طبیعی گرگان در قالب یک طرح بلوک کامل در 3 تکرار کشت و در زمان رسیدگی بوته‌ها ارزیابی صفات زراعی صورت گرفت. در آزمایشگاه پس از استخراج DNA و رنگ‌آمیزی محصولات PCR با استفاده از 10 جفت آغازگر STS، مجموع امتیاز زیرواحد‌های HMWG برای هر ژنوتیپ ثبت و سپس به عنوان امتیاز کیفی آن نمونه مورد تجزیه و تحلیل قرار گرفت.

یافته‌ها: تجزیه واریانس داده‌ها نشان دادکه تنوع معنی‌داری برای عملکرد دانه، ارتفاع بوته، طول سنبله، تعداد دانه در سنبله، تعداد سنبله در متر مربع و وزن هزار دانه وجود داشت. بیشترین عملکرد دانه در رقم نودل و لاین‌های امیدبخش N93-9، N93-17، N92-19 و کراس5028 مشاهده شد. پلی‌مورفیسم قابل‌توجهی برای زیرواحدهای HMWG در جایگاه‌های ژنی Glu-A1، Glu-B1 و Glu-D1 مشاهده گردید، بطوریکه امتیاز کیفی ژنوتیپ‌ها بین 6 تا 10 برآورد شد و 13 ژنوتیپ امتیاز کیفی حداکثر (10) را دریافت نمودند. اندازه باندهای بدست آمده برای آغازگرها و زیرواحدهای مشاهده شده در رقم چینی بهاره (نمونه شاهد) با نتایج سایر محققین مطابقت کامل داشت. تجزیه خوشه‌ای بر مبنای امتیازات کیفی، ژنوتیپ‌ها را در چهار کلاستر مجزا دسته‌بندی نمود. این کلاسترها به ترتیب حاوی ژنوتیپ‌های دارای کیفیت نانوایی خوب، مطلوب، متوسط و ضعیف بودند. ارزشگذاری نمونه‌ها از هر دو جنبه کمی و کیفی نشان داد که در بین مورد مطالعه 13 ژنوتیپ دارای عملکرد دانه و امتیاز کیفی بالا، 5 ژنوتیپ با عملکرد دانه بالا و امتیاز کیفی پایین، 10 ژنوتیپ دارای عملکرد دانه پایین و امتیاز کیفی بالا و 2 ژنوتیپ دارای عملکرد دانه و امتیاز کیفی پایین بودند.

نتیجه‌گیری: نتایج نشان داد که در جامعه مورد بررسی واریانس برای عملکرد دانه و سایر صفات مورفولوژیک و همچنین پلی‌مورفیسم برای HMWG قابل‌توجه بود. قرارگیری نودل، تیرگان و مروارید در گروه ارقام دارای عملکرد و کیفیت بالا، بیانگر ارزشمند بودن آنها به عنوان منبع ژن‌های مطلوب بود. این مطالعه کارایی نشانگرهای STS در بهبود متوسط کیفیت نانوایی گندم و پتانسیل آنها برای MAS را اثبات نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of HMW glutenin subunits in cultivars and promising lines of bread wheat using STS markers

نویسندگان [English]

  • Gholamreza Majdian 1
  • Mohammadhadi Pahlevani 2
  • Khalil Zeinalnejad 3
1 M.Sc. Student of the Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Corresponding Author, Professor of the Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Assistant Prof. of the Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Extended abstract:

Background and objectives: Improving the yield of crops from both quantitative and qualitative aspects has always been the most important goal of breeders. In wheat, the baking quality mainly depends on the amount and type of gluten-forming proteins, especially glutenin. The aim of this study was to determine bakery quality using STS markers related to high molecular weight glutenin subunits (HMWG) and also to compare grain yield and some morphological traits of wheat genotypes in Golestan province.

Materials and methods: Seeds of 30 wheat genotypes, including common cultivars and promising wheat lines from Golestan province's Participatory variety selection project was planted in the farm of Gorgan University of Agricultural Sciences and Natural Resources in the form of a complete block design in 3 replications, and at the time of maturity of the plants, evaluation of agricultural traits was performed. In the laboratory, after DNA extraction and staining of PCR products using 10 pairs of STS primers, the total score of HMWG subunits for each genotype was recorded and then analyzed as the quality score of that sample.

Results: Analysis of variance showed that there was significant variation for seed yield, plant height, spike length, number of seeds per spike, number of spikes per square meter and weight of 1000 seeds. The highest seed yield was observed in cultivar Nodel and promising lines N93-9, N93-17, N92-19 and Cross5028. Significant polymorphism was observed for HMWG subunits in Glu-A1, Glu-B1 and Glu-D1 loci, so that the quality score of the genotypes was estimated between 6 and 10, and 13 genotypes had received the maximum quality score (10). The size of the obtained bands for the primers and subunits observed in the Chinese spring cultivar (control) was in complete agreement with the results of other researchers. Cluster analysis based on qualitative scores classified the genotypes into four separate clusters. These clusters contained genotypes with good, favorable, medium and poor baking quality, respectively. Valuing the samples from both quantitative and qualitative aspects showed that among the studied 13 genotypes with high grain yield and high-quality score, 5 genotypes with high grain yield and low-quality score, 10 genotypes with low grain yield and high-quality score and 2 genotypes had low seed yield and quality score.

Conclusion: The results showed that the variance for seed yield and other morphological traits as well as polymorphism for HMWG was significant in the studied population. Locating Nodel, Tirgan and Marwarid in the group of varieties with high performance and quality indicated their value as a source of desirable genes. This study proved the efficiency of STS markers in improving the average bakery quality wheat and their potential for MAS.

کلیدواژه‌ها [English]

  • gluten
  • bakery value
  • cluster
  • PCR
  • electrophoresis
1.Irannejad, H., & Shahbazian, N. (2004). Cultivation of cereals (first volume), Wheat, Karnoo Press, Tehran, Iran, 272 p. [In Persian]
2.FAO. )2021(. Available online at: https:// www.fao.org/faostat/en/#data/QCL.
3.Curtis, B. C., Sanjaya, R., & Macpherson, H. G. (2002). Bread wheat: improvement and production. Food and Agriculture Organization of the United Nations (FAO), Print Book, English, 351 p.
4.Payne, P. I. )1987(. The genetical basis of bread making quality in wheat. Aspects of Applied Biology, 15, 79-90.
5.Gale, K. R. )2005(. Diagnostic DNA markers for quality traits in wheat. Journal of Cereal Science, 41, 181-192.
6.Gao, S., Sun, G., Liu, W., Sun, D., Peng, Y., & Ren, X. (2020). High-molecular-weight glutenin subunit compositions in current Chinese commercial wheat cultivars and the implication on Chinese wheat breeding for quality. Journal Cereals and Grains Association, 771, 762. Doi: 10.1002/cche.10290.
7.Lagudah, E. S., Floor, R. G., & Halloran, G. M. (1987). Variation in high molecular weight glutenin subunits in landraces of hexaploid wheat from Afghanistan. Euphytica, 36, 3-9.
8.Ahmad, M., Griffin, W. B., & Sutton, K. H. (1998). Quantification of glutenin and gliadin as a measure of bread baking quality by size exclusion and reverse phase HPLC. Wheat Genetics Symposium, 4, 124-12.
9.Bishop, N. I., & Senger, H. (1991). Preparation and photosynthetic properties of synchronous cultures of Scenedesmus. Methods Enzymol, 23, 53-66.
10.Kuchel, H., Fox, R., Reinheimer, J., Mosionek, L., Willey, N., Bariana, H., & Jefferies, S. (2007). The successful application of a marker-assisted wheat breeding strategy. Molecular Breeding, 20, 295-308.
11.Semgan, K., Bjornstad, A., & Ndji Onjop, M. N. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5 (25), 2540-2568.
12.Johal, J., Gianibelli, M. C., Rahman, S., Morell, M. K., & Gale, K. R. (2004). Characterization of low molecular-weight glutenin genes in Aegilops tauschii. Theoretical and Applied Genetics, 109, 1028-1040.
13.Shewry, P., Gilbert, S., Savage, A., Tatham, A., Wan, Y. F., Belton, P., & Halford, N. (2003). Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theoretical and Applied Genetics, 106, 744-750. Doi:10.1007/s00122-002-1135-6.
14.Payne, P. I., Holt, L. M., Law, C. N., & Blackman, J. A. (1981). Correlations between the inheritance of certain high molecular weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. Journal of the Science of Food and Agriculture, 32, 51-60.
15.Piraeshfar, B. Jalali Kamali, M., Najafian G., Norinia, A., & Lotfalinejad, L. (2005). The quality of bread wheat produced in Iran during the harvest season, Proceedings of the 9th Congress of Agricultural Sciences of Iran, University of Tehran, Aburihan Campus. 289 p. [In Persian]
16.Samiei, M. (2003). The quality of Iranian wheat, Center for research and self-sufficiency of milling, baking and publishing publications affiliated with the Ministry of Industry of Iran, Tehran, 56 p. [In Persian]
17.Irani, P. (2004). Studying the composition of flour and the appropriate formulation of dough for the production of flat breads. Technical Report, Research Institute of Agricultural Engineering and Technology, 15 p. [In Persian]
18.Famina, A. A., Malyshev, S. V., Shylava, A. A., Liaudanski, A. D., & Urbanovich, O. Y. (2019). Study of allelic diversity of the gene encoding high molecular weight glutenins in wheat varieties and lines utilizes in the breeding process in the republic of Belarus using PCR markers. Journal Cytology and Genetics, 53, 282-293.
19.Aktas, H., & Sener, O. (2020). Effect of HMW and LMW glutenin alleles on quality traits of bread wheat. Journal Genetika, 5, 257-271.
20.Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
21.Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between HMW glutenin subunit composition and the bread making quality of British grown wheat varieties. Journal of the Sciences of Food and Agriculture, 40, 51-65.
22.Poorali, R. (2020). Studying the combinability of grain yield and bakery value estimation using STS specific allele markers in wheat cultivars, MSc Thesis, Gorgan University of Agricultural Sciences and Natural Resources, 83 p. [In Persian]
23.Poudine, M., Pahlevani, M., Zeinalinejad, K., & Soghi, H. U. (2015). Determining quality of bread wheat cultivars using protein electrophoresis and STS markers associated with high molecular weight glutenin subunits. Biological Forum, 7, 1131-1138.
24.Shadadeh, M., Pahlevani, M., Zenalinezhad, K., Esmaeilzadeh Moghaddam, M., & Bagherikia, S. (2020). Evaluation of baking quality in Iranian bread wheat cultivars using high molecular weight glutenin subunits. Journal of Crop Production, 12, 151-160. [In Persian]
25.Song, L., Wang, R., Yang, X., Zhang, A., & Liu, D. (2023). Molecular markers and their applications in marker assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture, 13, 642.
26.Liu, S., Chao, S., & Anderson, J. A. (2008). New DNA markers for high molecular weight glutenin subunits in wheat. Theoretical and Applied Genetics, 118, 177-183.
27.Dovidio, R., Porceddu, E., & Lafiandra, D. (1994). PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theoretical and Applied Genetics, 88, 175-180.
28.Ma, W., Zhang, W., & Gale, K. (2003). Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 134, 51-60.
29.Li, W., Z. H., Yan, Y. M., Wei, Lan, X. J., & Zheng, Y. L. (2006). Evaluation of genotype X environment interactions in Chinese spring wheat by the AMMI model, correlation and path analysis. Journal of Agronomy and Crop Sciences, 192, 221-227.
30.Branlard, G., & Dardevet, M. (1985). Diversity of grain protein and bread wheat quality. II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science, 3, 345-354.
31.Schwarz, G., Felsenstein, F., & Wenzel, G. (2004). Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat. Theoretical and Applied Genetics, 109, 1064-1069.
32.Ahmad, M. (2000). Mulecular marker –assisted selection of HMW glutenin alleles related to wheat bread quality
by PCR-generated DNA markers. Theoretical and Applied Genetics, 101, 892-896.
33.Lukow, O. M., Payne, P. I., & Tkachuk, R. (1989). The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality. Journal of the Science of Food and Agriculture, 46, 451-460.
34.Anderson, O., & Greene, F. (1989). The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theoretical and Applied Genetics, 77, 689-700.
35.Rodriguez, Q. M., & Carrilo, J. (1994). Relationship between high molecular weight glutenin subunits and gluten strength of Spanish landraces of Triticum aestivum. Investigation Agraria, Produccion-Y-Proteccion-Vegetals, 9, 327-339. [In Spanish]
36.Brar, G. S., Pozniak, C. J., Briggs, C., & Hucl, P. J. (2021). Combined selection of Gpc-B1 and Glu-B1 locus encoding the Bx7OE subunit for improving end-use quality of hard white wheat. Journal of Cereal Science, 100, 103260.
37.Smith, R. L., Schweder, M., & Barnett, R. (1994). Identification of glutenin alleles in wheat and triticale using PCR-generated DNA markers. Crop Science, 34, 1373-1378.
38.Payne, R. I., & Lawrence, C. J. (1983). Catalogue of alleles for the complex gene loci. Glu-A1, Glu-B1, and Glu-D1 which code for high molecular weight subunits of Glutenin in hexaploid wheat. Cereal Research Communications,11 (1), 29-35.
39.Ram, S., Devi, R., Singh, R. B., Narwal, S., Singh, B., & Singh, G. P. (2019). Identification of codominant marker linked with Glu-D1 double null and its utilization in improving wheat for biscuit making quality. Journal of Cereal Science, 90, 102853.