تاثیر محلول پاشی با پوترسین بر برخی پارامترهای مورفولوژیکی و فیزیولوژیکی ریحان (Ocimum basilicum L.) تحت شرایط تنش خشکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استاد گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 دانش‌آموخته دکتری علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار گروه باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشجوی کارشناسی‌ارشد علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

چکیده

سابقه و هدف: تنش خشکی به‌عنوان یکی از اصلی‌ترین تنش‌های غیرزیستی، رشد و عملکرد گیاه را با تأثیر بر فرآیندهای فیزیولوژیکی و بیوشیمیایی مختلف، مانند یکپارچگی غشا، رنگدانه‌های فتوسنتزی، تنظیم اسمزی، روابط آب، بسته شدن روزنه ها و کاهش فعالیت فتوسنتزی کاهش می‌دهد. ریحان (Ocimum basilicum L.) یکی از گونه‌های خانواده Lamiaceae است که به دلیل داشتن طیف گسترده‌ای از خواص دارویی به خوبی شناخته شده است . این گیاه به طور سنتی برای استفاده از آن برای اهداف آشپزی و عطرسازی شناخته شده است. پلی آمین‌ها گروهی از ترکیبات آلی پلی‌کاتیونی با وزن مولکولی کم و دارای دو یا چند گروه آمینی هستند و تقریباً در تمام موجودات زنده یافت می‌شوند. اثر کلی پوترسین، نه تنها در فرآیندهای رشد و نمو گیاهان شرکت می‌کند، بلکه به تحمل در برابر تنش های غیرزیستی مختلف مانند شوری، خشکی، دمای بالا و سرما کمک می-کند.

مواد و روش‌ها : این آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی به‌صورت گلدانی در محدوده گلخانه‌ آموزشی و پژوهشی گروه علوم باغبانی دانشکده‌ کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال 1396 اجرا شد. فاکتور اول تنش خشکی در سه سطح (آبیاری کامل و قطع آبیاری در مرحله شروع رشد زایشی و قطع آبیاری در 50 درصدگلدهی) و فاکتور دوم محلول‌پاشی با پوترسین در سه غلظت (0، 1 و 2 میلی‌مولار) در تیمار شاهد اسپری برگی با آب مقطر انجام شد.

یافته‌ها:نتایج بدست آمده نشان داد که در شرایط تنش خشکی پارامترهای رشدی مانند ارتفاع بوته، وزن وخشک ساقه، تعدادبرگ، پارمترهای فیزیولوژیکی مانند رنگیزه های فتوسنتزی، محتوای نسبی آب برگ کاهش و میزان نشت یونی و پرولین افزایش یافتند در مقابل محلول پاشی با پوترسین موجب بهبود پارامترهای رشدی و کاهش میزان نشت یونی گردید. به‌طوری‌که بیشترین میزان ارتفاع بوته (16/60 سانتی متر) وزن تر شاخساره (33/17)، میزان کلروفیل کل (11 میلی گرم در گرم وزن تر) در تیمار بدون تنش و محلول پاشی با غلظت 2 میلی مولار پوترسین بدست آمد، و کمترین میزان این صفات در تیمار قطع آبیاری در ابتدایی رشد زایشی و بدون محلول پاشی با پوترسین مشاهده گردید. بعلاوه بیشترین میزان پرولین (51/2 میکرو مول بر وزن تر) و نشت یونی (56/37 درصد) بترتیب در تیمار قطع آبیاری در شروع رشد زایشی و محلول پاشی با غلظت 2 میلی مولار پوترسین و بدون محلول پاشی حاصل شد.

نتیجه‌گیری: بر اساس نتایج بدست آمده تنش خشکی بویژه در شروع رشد زایشی موجب کاهش پارامترهای رشدی و فیزیولوژیکی گردید. از طرفی بکار بردن پوترسین بصورت محلول پاشی از تاثیر مثبت بر رنگیزه های فتوستزی و تنظیم اسمزی موجب بهبود پارامترهای رشدی و فیزیولوژیکی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of foliar spraying with putrescine on some morphological and physiological parameters of basil (Ocimum basilicum L.) under drought stress conditions

نویسندگان [English]

  • Behrooz Esmaielpour 1
  • Zahra Aslani 2
  • Rasoul Azarmi 3
  • Sanaz Adineh 4
1 Corresponding Author, Professor, Dept. of Horticultural Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil
2 Ph.D. Graduated of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
3 Associate Prof., Dept. of Horticultural Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
4 M.Sc. Student of Horticultural Science, Faculty of Agricultural Sciences and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Abstract



Background and purpose:

Drought stress, as one of the main abiotic stresses, reduces plant growth and performance by affecting various physiological and biochemical processes, such as membrane integrity, photosynthetic pigments, osmotic regulation, water relations, stomatal closure, and reducing photosynthetic activity. Basil (Ocimum basilicum L.) is one of the species of the Lamiaceae family, which is well known for having a wide range of medicinal properties. This plant is traditionally known for its use for culinary and perfumery purposes. Polyamines are a group of polycationic organic compounds with low molecular weight and having two or more amino groups and are found in almost all living organisms. The general effect of putresin not only participates in the growth and development processes of plants, but also helps to withstand various abiotic stresses such as salt, drought, high temperature and cold.

Materials and methods:

This factorial experiment was carried out in the form of a completely randomized design in pots in the educational and research greenhouse of the Department of Horticultural Sciences, College of Agriculture and Natural Resources, Mohaghegh Ardabili University in 2016. The first factor of drought stress at three levels (complete irrigation and stop irrigation at the beginning of reproductive growth and stop irrigation at 50% of flowering) and the second factor of foliar spraying with putrescine at three concentrations (0, 1 and 2 mM) in the control treatment of leaf spray with Distilled water was used.

Findings:

The obtained results showed that under drought stress, growth parameters such as plant height, stem dry weight, number of leaves, physiological parameters such as photosynthetic pigments, the relative water content of leaves decreased and the amount of ion leakage and proline increased. While, foliar spraying with putrescine improved growth parameters and reduced ion leakage. So that the highest plant height (60.16 cm), shoot fresh weight (17.33), total chlorophyll content (11 mg/g fresh weight) in the treatment without stress and foliar spraying with a concentration of 2 mM putrescine was obtained, and the lowest amount of these traits was observed in the treatment of stopping irrigation at the beginning of reproductive growth and without foliar spraying with putrescine. In addition, the highest amount of proline (2.51 μmol/fwg-1) and ion leakage (37.56%) were obtained in the treatment of stopping irrigation at the beginning of reproductive growth and foliar spraying with a concentration of 2 mM putrescine and without foliar spraying, respectively.

Conclusion:

Based on the obtained results, drought stress, especially at the beginning of reproductive growth, caused a decrease in growth and physiological parameters. On the other hand, using putrescine as a foliar spray improved growth and physiological parameters due to its positive effect on photosynthetic pigment and osmotic regulation.

کلیدواژه‌ها [English]

  • Keywords: growth parameters
  • basil
  • growth regulators
  • abiotic stresses
1.Tang, W., & Newton, R. J. (2005). Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 46, 31-43.
2.Kaur-Sawhney, R., Tiburcio, A. F., Altabella, T., & Galston, A. W. (2003). Polyamines in plants: an overview. Journal of Molecular Cell Biology, 2, 1-12.
3.Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in plant science, 9, 1945.
4.Nahar, K., Hasanuzzaman, M., Rahman, A., Alam, M. M., Mahmud, J. A., Suzuki, T., & Fujita, M. (2016). Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Frontiers in Plant Science, 7, 1104.
5.Walters, D. (2003). Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytologist, 159(1), 109-115.
6.González-Hernández, A. I., Scalschi, L., Vicedo, B., Marcos-Barbero, E. L., Morcuende, R., & Camañes, G. (2022). Putrescine: A key metabolite involved
in plant development, tolerance and resistance responses to stress. International journal of molecular sciences, 23(6), 2971.
7.Gill, S. S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant signaling & behavior, 5(1), 26-33.
8.Liu, J. H., Kitashiba, H., Wang, J., Ban, Y., & Moriguchi, T. (2007). Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnology, 24(1), 117-126.
9.Jiménez-Donaire, M. D. P., Giráldez, J. V., & Vanwalleghem, T. (2020). Impact of climate change on agricultural droughts in Spain. Water, 12(11), 3214.
10.Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in plant science, 9, 393.
11.Wach, D., & Skowron, P. (2022). An overview of plant responses to the drought stress at morphological, physiological and biochemical levels. Polish Journal of Agronomy, 50, 25-34.
12.Gupta, S., Agarwal, V. P., & Gupta, N. K. (2012). Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 18, 331-336
13.Zhu, X., Wang, L., Yang, R., Han, Y., Hao, J., Liu, C., & Fan, S. (2019). Effects of exogenous putrescine on the ultrastructure of and calcium ion flow rate in lettuce leaf epidermal cells under drought stress. Horticulture, Environment, and Biotechnology, 60, 479-490.
14.Abd Elbar, O. H., Farag, R. E., & Shehata, S. A. (2019). Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Annals of Agricultural Sciences, 64(2), 129-137.
15.Khosrowshahi, Z. T., Slehi-Lisar, S. Y., Ghassemi-Golezani, K., & Motafakkerazad, R. (2018). Physiological responses of safflower to exogenous putrescine under water deficit. Journal of Stress Physiology & Biochemistry, 14(3), 38-48.
16.Khalil, S. I., El-Bassiouny, H. M. S., Hassanein, R. A., Mostafa, H. A., El-Khawas, S. A., & El-Monem, A. A. A. (2009). Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine.
17.Ali, S. I., Sheikh, W. M., Rather, M. A., Venkatesalu, V., Muzamil Bashir, S., & Nabi, S. U. (2021). Medicinal plants: Treasure for antiviral drug discovery. Phytotherapy Research, 35(7), 3447-3483.
18.Thomas, E., Stewart, L. E., Darley, B. A., Pham, A. M., Esteban, I., & Panda, S. S. (2021). Plant-based natural products and extracts: Potential source to develop new antiviral drug candidates. Molecules, 26(20), 6197.
19.Karpiński, T. M. (2020). Essential oils of Lamiaceae family plants as antifungals. Biomolecules, 10(1), 103.
20.Al Jaouni, S., Saleh, A. M., Wadaan, M. A., Hozzein, W. N., Selim, S., & AbdElgawad, H. (2018). Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. Journal of plant physiology, 224, 121-131.
21.Aminian, A. R., Mohebbati, R., & Boskabady, M. H. (2022). The effect of Ocimum basilicum L. and its main ingredients on respiratory disorders: An experimental, preclinical, and clinical review. Frontiers in pharmacology, 12, 805391.
22.Dhama, K., Sharun, K., Gugjoo, M. B., Tiwari, R., Alagawany, M., Iqbal Yatoo, M., & Farag, M. R. (2023). A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Reviews International, 39(1), 119-147.
23.Arnon, A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23, 112-121.
24.Redmann, R. E., Haraldson, J., & Gusta, L. V. (1986). Leakage of UV‐absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum, 67(1), 87-91.
25.Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30(1), 105-111.
26.Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
27.Aslani, Z., Hassani, A., Mandoulakani, B. A., Barin, M., & Maleki, R. (2023). Effect of drought stress and inoculation treatments on nutrient uptake, essential oil and expression of genes related to monoterpenes in sage (Salvia officinalis). Scientia Horticulturae, 309, 111610.
28.García-Caparrós, P., Romero, M. J., Llanderal, A., Cermeño, P., Lao, M. T., & Segura, M. L. (2019). Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six Lamiaceae species. Water, 11(3), 573.
29.Hassan, F. A. S., & Ali, E. F. (2014). Impact of different water regimes based on class-A pan on growth, yield and oil content of Coriandrum sativum L. plant. Journal of the Saudi Society of Agricultural Sciences, 13(2), 155-161.
30.Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y., & Siddique, K. H. (2016). Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for sustainable development, 36, 1-21.
31.Pál, M., Szalai, G., & Janda, T. (2015). Speculation: polyamines are important in abiotic stress signaling. Plant Science, 237, 16-23.
32.Hussein, H. A. A., Alshammari, S. O., Abd El-Sadek, M. E., Kenawy, S. K., & Badawy, A. A. (2023). The promotive effect of putrescine on growth, biochemical constituents, and yield of wheat (Triticum aestivum L.) plants under water stress. Agriculture, 13(3), 587.
33.Taiz, L., & Zeiger, E. (2006). Plant physiology sinauer associates. Inc., Sunderland, MA.
34.Siddiqui, M. H., Mohammad, F., Khan, M. M. A., & Al-Whaibi, M. H. (2012). Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma, 249, 139-153.
35.Rahdari, P., Hosseini, S. M., & Tavakoli, S. (2012). The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Medicinal Plants Research, 6(9), 1539-1547.
36.Shi, J., Fu, X. Z., Peng, T., Huang, X. S., Fan, Q. J., & Liu, J. H. (2010). Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology, 30(7), 914-922.
37.Arasteh, F., Moghaddam, M. & Ghasemi Pirbalouti, A. (2020). The effect of putrescine foliar application on the induction of drought resistance in Mexican marigold (Tagetes minuta L.). Journal of Cell & Tissue (JCT), 11(3), 204-220. [In Persian]
38.Farzi-Aminabad, R., Nasrollah Zadeh, S., & Ghassemi-Golezani, K. (2021). Response of safflower in water deficit and foliar application of putrescine and 24-epibrassinolide. Journal of Agricultural Science and Sustainable Production, 1(2), 289-302.
39.Jahanbakhsh Godehkahriz, S., Kheiri Sis, M., & Raeesi Sadati, S. Y. (2022). Effect of putrescine on yield and some physiological parameters of wheat in response to water deficit stress. Iranian Journal of Field Crop Science, 53(4), 16-29.
40.Izadi, Z., ESNA, A. M., & Ahmadvand, G. (2009). Effect of drought stress on yield, proline contents, soluble sugars, chlorophyll, relative water contents and essential oil in peppermint (Mentha piperita L.).
41.Rubinowska, K., Pogroszewska, E., & Michalek, W. (2012). The effect of polyamines on physiological parameters of post - harvest quality of cut stems of Rosa ‘Red Berlin’. Acta Scientiarum Polonorum Hortorum Cultus. 11, 81-93.
42.Darabi, F., Abbasi, N., & Zarea, M. J. (2021). Evaluation of morphophysiological traits of Ocimum basilicum L. in response to foliar application of putrescine and 24-epibrassinolide under drought stress. Iranian Journal of Medicinal and Aromatic Plants Research, 37(2), 329-349.‏
43.Huang, L., Zhang, L., Zeng, R., Wang, X., Zhang, H., Wang, L., ... & Chen, T. (2020). Brassinosteroid priming improves peanut drought tolerance via eliminating inhibition on genes in photosynthesis and hormone signaling. Genes, 11(8), 919.
44.Shahrivar, Z., Abtahi, F., & Hatami, M. (2020). Effect of growth regulator salicylate on some physiological
and biochemical parameters of peppermint (Mentha piperita L.) under drought stress. Journal of Plant Research (Iranian Journal of Biology), 32(4), 815-830.
45.Farooq, M., Basra, S. M. A., Wahid, A., & Rehman, H. (2009). Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 195(4), 254-261.
46.Ghassemi-Golezani, K., Abbasi, L., & Solhi-Khajehmarjan, R. (2023). Changes in physiological traits, grain and oil yields of black mustard (Brassica nigra L.) in response to foliar application of putrescine under drought stress. Journal of Agricultural Science and Sustainable Production, 33(1), 97-111.
47.Skowron, E., & Trojak, M. (2021). Effect of exogenously-applied abscisic acid, putrescine and hydrogen peroxide on drought tolerance of barley. Biologia, 76(2), 453-468.
48.Omer, A. M., Osman, M. S., & Badawy, A. A. (2022). Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Botanical Studies, 63(1), 15.
49.Talaat, N. B., & Shawky, B. T. (2016). Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. Journal of Plant Growth Regulation, 35, 518-533.
50.Khan, N., Bano, A., & Babar, M. A. (2019). Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PloS one, 14(3), e0213040.
51.Killiny, N., & Nehela, Y. (2020). Citrus polyamines: structure, biosynthesis, and physiological functions. Plants, 9(4), 426.
52.Islam, M. J., Ryu, B. R., Azad, M. O. K., Rahman, M. H., Rana, M. S., Lim, J. D., & Lim, Y. S. (2021). Exogenous putrescine enhances salt tolerance and ginsenosides content in Korean ginseng (Panax ginseng Meyer) sprouts. Plants, 10(7), 1313.