1.Else, M., & Atkinson, C. (2010). Climate change impacts on UK top and soft fruit production. Outlook on Agriculture, 39(4), 257-262.
2.Fan, W., Zhang, M., Zhang, H., & Zhang, P. (2012). Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PloS one, 7(5), e37344.
3.Kesici, M., Gulen, H., Ergin, S., Turhan, E., Ahmet, I. P. E. K., & Koksal, N. (2013). Heat-stress tolerance of some strawberry (Fragaria× ananassa) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 244-249.
4.Natarajan, S. (2005). High temperature stress responses of Salvia splendens and Viola X wittrockiana. PhD Diss, Louisian State University. 154 p.
5.Zsófi, Z., Váradi, G., Bálo, B., Marschall, M., Nagy, Z., & Dulai, S. (2009). Heat acclimation of grapevine leaf photosynthesis: mezo-and macroclimatic aspects. Functional Plant Biology,
36(4), 310-322.
6.Liang, Y., Hua, H., Zhu, Y. G., Zhang, J., Cheng, C., & Romheld, V. (2006). Importance of plant species and external silicon concentration to active silicon uptake and transport. New phytologist, 172(1), 63-72.
7.Taheri, M., & Haghighi, M. (2018). Benzyl adenine is more effective than potassium silicate on decreasing the detrimental effects of heat stress in pepper (Capsicum annum cv. PS301). Iran Agricultural Research, 37(1), 89-98. [In Persian]
8.irabbasi, N., Nikbakht, A., Etemadi, N., & Sabzalian, M. R. (2013). Effect of different concentrations of potassium silicate, nano-silicon and calcium chloride on concentration of potassium, calcium and magnesium, chlorophyll content and number of florets of Asiatic lily cv. ‘Brunello’. Journal of Soil and Plant Interactions, 4(2), 41-50. [In Persian]
9.Whetzel, H. H. (1918). An outline of the history of phytopathology. WB Saunders.
10.Eskandari, S., Guppy, C. N., Knox, O. G., Flavel, R. J., Backhouse, D., & Haling, R. E. (2017). Mycorrhizal contribution to phosphorus nutrition of cotton in low and highly sodic soils using dual isotope labelling (32P and 33P). Soil Biology and Biochemistry, 105, 37-44.
11.Nagarathna, T. K., Prasad, T. G., Bagyaraj, D. J., & Shadakshari, Y. G. (2007). Effect of arbuscular mycorrhiza and phosphorus levels on growth and water use efficiency in sunflower at different soil moisture status. Journal of Agricultural Technology, 3(2), 221-229.
12.Wright, S. F. (2005). Management of arbuscular mycorrhizal fungi. Roots and soil management: interactions between roots and the soil, 48, 181-197.
13.Kapoor, R., Giri, B., & Mukerji, K. G. (2002). Soil factors in relation to distribution and occurrence of vesicular arbuscular mycorrhiza. In Techniques in mycorrhizal studies (pp. 51-85). Dordrecht: Springer Netherlands.
14.Huang, H., Zhang, S., Wu, N., Luo, L., & Christie, P. (2009). Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biology and Biochemistry, 41(4), 726-734.
15.Bitterlich, M., Krügel, U., Boldt‐Burisch, K., Franken, P., & Kühn, C. (2014). The sucrose transporter Sl
SUT 2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. The Plant Journal, 78(5), 877-889.
16.Matsubara, Y. S., Hirano, I., Come on, D., & Koshikawa, K. (2004). Increased tolerance to Fusarium wilt in mycorrhizal strawberry plants raised by capillary watering methods. Environment Control in Biology, 42(3), 185-191.
17.Sánchez, F. J., Manzanares, M., de Andres, E. F., Tenorio, J. L., & Ayerbe, L. (1998). Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field crops research, 59(3), 225-235.
18.Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of botany, 78(3), 389-398.
19.Kormanik, P. P., & MCGraw, A. C. (1982). Quantification of vesicular-arbuscular mycorrhizas in plant roots. In Methods and Principles of Mycorrhizal Research (Ed. by N. C. Schenck), The American Phytopathological Society, St Paul, Minnesota. pp. 37-45.
20.Bates, L., Waldren, R., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
21.Hallmark, C. T., Wilding, L. P., & Smeck, N. E. (1983). Silicon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 263-273.
22.Widada, J., Damarjaya, D. I., & Kabirun, S. (2007). The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In First international meeting on microbial phosphate solubilization
(pp. 173-177). Springer, Dordrecht.
23.Ilbas, A. I., & Sahin, S. (2005). Glomus fasciculatum inoculation improves soybean production. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 55(4), 287-292.
24.Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A., & Azcón, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of plant physiology, 166(13), 1350-1359.
25.Ortaş, İ. (1996). The influence of use of different rates of mycorrhizal inoculum on root infection, plant growth, and phosphorus uptake. Communications in soil science and plant analysis,
27(18-20), 2935-2946.
26.Xiao, J., Li, Y., & Jeong, B. R. (2022). Foliar Silicon Spray to Strawberry Plants during Summer Cutting Propagation Enhances Resistance of Transplants to High Temperature Stresses. Frontiers in Sustainable Food Systems, 6, 938128.
27.Li, Y., Xiao, J., Hu, J., & Jeong, B. R. (2020). Method of silicon application affects quality of strawberry daughter plants during cutting propagation in hydroponic substrate system. Agronomy, 10(11), 1753.
28.Moradtalab, N., Hajiboland, R., Aliasgharzad, N., Hartmann, T. E., & Neumann, G. (2019). Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy, 9(1), 41.
29.Zhu, X., Song, F., & Liu, F. (2017). Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants. Arbuscular mycorrhizas and stress tolerance of plants, 163-194.
30.Schonfeld, M. A., Johnson, R. C., Carver, B. F., &Mornhinweg, D. W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Science, 28(3), 526-531.
31.Romero-Aranda, M. R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of plant physiology, 163(8), 847-855.
32.Li, Y., Xiao, J., Hu, J., & Jeong, B. R. (2020). Method of silicon application affects quality of strawberry daughter plants during cutting propagation in hydroponic substrate system. Agronomy, 10(11), 1753.
33.Gulen, H., &Eris, A. (2003). Some physiological changes in strawberry (Fragaria × ananassa ‘Camarosa’) plants under heat stress. The Journal of Horticultural Science and Biotechnology, 78(6), 894-898.
34.Gulen, H., & Eris, A. (2004). Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 166(3), 739-744.
35.Kesici, M., Gulen, H., Ergin, S., Turhan, E., Ahmet, I. P. E. K., &Koksal, N. (2013). Heat-stress tolerance of some strawberry (Fragaria × ananassa) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 244-249.
36.Kaur, R., Bains, T. S., Bindumadhava, H., & Nayyar, H. (2015). Responses of mungbean (Vigna radiata L.) genotypes to heat stress: Effects on reproductive biology, leaf function and yield traits. Scientia Horticulturae, 197, 527-541.
37.Savvas, D., & Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66-81.
38.Agarie, S., Miura, A., Sumikura, R., Tsukamoto, S., Nose, A., Arima, S., & Miyao-Tokutomi, M. (2002). Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plants. Plant Science, 162(2), 257-265.
39.Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of plant physiology, 161(11), 1189-1202.
40.Ez-zohra, I. F., Said, Q. S. A. I. B., Mohamed, F. A. I. Z. E., & Tayeb, K. O. U. S. S. A. (2014). Biochemical Changes in Grapevines Roots in Responses to Osmotic Stress. International Journal of Scientific and Research Publications, 4(7), 1-5.
41.Jokar, N. G., Nadian, H., Moghaddam, B. K., & Gharineh, M. H. (2016). Influence of arbuscular mycorrhizal fungi and drought stress on some macro nutrient uptake in three leek genotypes with different root morphology. Journal of Water and Soil, 29(1), 198-209. [In Persian]
42.Yousefi, R., & Esna-ashari, M. (2017). The effect of Micro- and Nanoparticles of silicon on concentration of macro- and micro elements and silicon content of strawberry plant in soilless culture condition. Journal of Soil and Plant Interactions, 8(1), 58-71. [In Persian]
43.Seyed lor, L., Tabatabaei, J., & Fallahi, E. (2009). The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticultural Science, 23(1), 88-95. [In Persian]
44.Abd-Alkarim, E., Bayoumi, Y., Metwally, E., & Rakha, M. (2017). Silicon supplements affect yield and fruit quality of cucumber (Cucumis sativus L.) grown in net houses. African Journal of Agricultural Research, 12(31), 2518-2523.