واکاوی عملکرد ارقام جدید گندم نان بر اساس شاخص‌های زراعی- اقلیمی تحت تاریخ کاشت‌های مختلف در گنبد

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

2 استادیار مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 کارشناس بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

چکیده

سابقه و هدف: تعیین تاریخ کاشت دقیق، ابزاری مناسب در کنترل طول دوره مراحل فنولوژیک به منظور بهینه‌سازی شرایط اقلیمی و به حداقل رساندن عوارض تنش گرما و خشکی انتهای فصل است. شاخص‌های زراعی-اقلیمی جهت بررسی فنولوژی گیاهان و ارتباط آن با عملکرد دانه مورد استفاده قرار می‌گیرند. در شرایط تغییر اقلیم، شـاخص‌هـای اقلیمـی کشاورزی دستخوش تغییر می‌شوند. بـا پایش ایـن شاخص‌ها مـی‌توان واکنش گیاهان زراعی به شرایط اقلیمی را در مراحل فنولوژی گیاهی مورد ارزیابی قرار داد. هدف این پژوهش واکاوی عملکرد دانه ارقام جدید گندم نان اقلیم گرم و مرطوب شمال در تاریخ کاشت‌های مختلف بر اساس شاخص‌های زراعی- اقلیمی در منطقه گنبد بود.
مواد و روش‌ها: این آزمایش در دو سال زراعی (1398-1396) در ایستگاه تحقیقات کشاورزی گنبد به صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی در چهار تکرار انجام شد. پنج تاریخ کاشت 10 آبان، 25 آبان، 10 آذر، 25 آذر و 10 دی ماه در کرت‌های اصلی و چهار رقم بهاره گندم نان شامل احسان، تیرگان، معراج و کلاته در کرت‌های فرعی قرار گرفتند. در هر مرحله فنولوژیکی، شاخص‌های زراعی- اقلیمی شامل مجموع طول روز (DL)، فتوپریود (PPD)، مجموع درجه روزهای رشد (GDD)، مجموع واحدهای حرارتی-نوری (PTU)، مجموع واحدهای حرارتی-آفتابی (HTU)، مجموع واحدهای حرارتی-رطوبتی (HYTU)، کارایی مصرف حرارت (HUE)، کارایی مصرف حرارتی-آفتابی (HTUE)، کارایی مصرف حرارتی-نوری (PTUE) و کارایی مصرف حرارتی-رطوبتی (HYTUE) محاسبه شدند.
یافته‌ها: نتایج نشان داد که عملکرد دانه در تاریخ کاشت‌های دوم (25 آبان) و سوم (10 آذر) تفاوت معنی‌داری با هم نداشت (به ترتیب 3/5708 و 4/5626 کیلوگرم در هکتار) و به طور معنی‌‌داری بیشتر از سایر تاریخ‌های کاشت بود. طول دوره پر شدن دانه، تعداد سنلبه در متر مربع و تعداد دانه در سنبله در سه تاریخ کاشت ابتدایی تفاوت معنی‌داری با هم نداشتند. طی پرشدن دانه، تاریخ کاشت سوم بیشترین مقادیر را از نظر شاخص‌های زراعی- اقلیمی شامل مجموع درجه روزهای رشد (GDD)، مجموع طول روز (DL)، مجموع واحد حرارتی-نوری (PTU)، مجموع واحد حرارتی-رطوبتی (HYTU) را به خود اختصاص داد. در حالی که تاریخ کاشت دوم حداکثر کارایی مصرف حرارت (HUE)، کارایی مصرف حرارتی-آفتابی (HTUE)، کارایی مصرف حرارتی-نوری (PTUE) و کارایی مصرف حرارتی-رطوبتی (HYTUE) را دارا بود. عملکرد دانه رقم کلاته (8/5269 کیلوگرم در هکتار) و تعداد سنبله در متر مربع این رقم (17/330) بطور معنی‌داری بیشتر از سایر ارقام (تیرگان، معراج و احسان) بود.
نتیجه‌گیری: تاریخ کاشت‌های دوم و سوم شرایط مطلوبی از نظر ارتفاع گیاه و مقاومت به خوابیدگی برای ارقام مختلف فراهم کرد. همچنین دو تاریخ کاشت مذکور، شرایطی بهینه از نظر مجموع پارامترهای اقلیمی شامل دما، طول روز، رطوبت نسبی وکارایی مصرف انرژی در طول دوره پر شدن دانه برای ارقام مختلف فراهم نمودند. عملکرد دانه در تاریخ کاشت اول به دلیل خوابیدگی شدید بوته‌ها و در تاریخ کاشت‌های چهارم و پنجم به دلیل مواجه شدن با تنش‌های گرما و خشکی انتهایی و کاهش طول دوره پر شدن دانه‌ها عملکرد دانه کاهش یافت. طول دوره رشد رقم کلاته کمتر از سایر ارقام بود (بدون تفاوت در طول دوره پر شدن دانه‌) که باعث فرار گیاه از تنش‌های گرما و خشکی انتهایی، افزایش کارایی مصرف انرژی و در نتیجه افزایش عملکرد دانه نسبت به سایر ارقام شد. بنابراین رقم کلاته برای کشت در مناطق کم باران شمالی استان گلستان در تاریخ کاشت‌های دوم و سوم بسیار مناسب و قابل توصیه است.

کلیدواژه‌ها


عنوان مقاله [English]

Yield Analysis of New Bread Wheat Cultivars Based on Agro-Climatic Indices under Different Sowing Dates in Gonbad

نویسندگان [English]

  • Habiballah Soughi 1
  • Manoochehr Khodarahmi 2
  • Jabar Jafarby 1
  • Mehdi Nazari 3
1 Assistant Prof., Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
2 Assistant Prof., Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
3 Expert, Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
چکیده [English]

Background and objectives: Determining the exact sowing date is an appropriate tool in controlling the length of the phenological stages for optimizing the climate conditions and minimizing the effects of terminal heat and drought stresses. The agro-climatic indices are used to study of plant phenology and its relationship with grain yield. Agro-climatic indices are changed under climate change conditions. The response of crops to climatic conditions can be assessed at the plant phenological stages by monitoring these indices. The aim of this study was to investigate the grain yield of new wheat cultivars related to northern warm and humid agro-climatic zone (Iran) under different sowing dates based on agro-climatic indices in Gonbad area.
Materials and methods: This experiment was conducted in Gonbad agricultural research station, Gonbad, Iran, during two cropping seasons (2017-2019) as split plot based on randomized complete block design (RCBD) with four replications. Five sowing dates of 1 November, 16 November, 1 December, 16 December and 31 December were placed in main plots and four spring wheat cultivars including Ehsan, Tirgan, Meraj and Kalateh were placed as subplots. In each phenological stage, agro-climatic indices were calculated which includes total day length (DL), photoperiod (PPD), growth day degree (GDD), photo-thermal unit (PTU), helio-thermal unit (HTU), hydro-thermal unit (HYTU), heat use efficiency (HUE), helio-thermal use efficiency (HTUE), photo-thermal use efficiency (PTUE) and hydro-thermal use efficiency (HYTUE).
Results: The results showed that no significant differences were observed in grain yield of second (25 November) and third (10 December) sowing dates (5708.3 and 5626.4 kg ha-1, respectively) and their grain yield was significantly greater than other sowing dates. The grian filling period, number of spike per square meter and number of grain per spike were not significantly different in three primary sowing dates. The third sowing date had the highest values in terms of agro-climatic indices including growing degree days (GDD), day length (DL), photo-thermal units (PTU), hydro-thermal units (HYTU), during grain filling period. While, the second sowing date had maximum heat use efficiency (HUE), helio-thermal use efficiency (HTUE), photo-thermal use efficiency (PTUE) and hydro-thermal use efficiency (HYTUE). Grain yield (5269.8 kg ha-1) and number of spike per square meter (330.17) of Kalateh cultivar were significantly greater than other cultivars (Tirgan, Meraj and Ehsan).
Conclusion: The second and third sowing dates provided suitable conditions for plant height and resistance to lodging in different cultivars. Also, the two mentioned sowing dates were provided optimum conditions for different cultivars in terms of climatic parameters including temperature, day length, relative humidity and energy use efficiency, during grain filling period. The grain yield decreased due to severe plant lodging in the first sowing date and exposure to terminal heat and drought stresses and reduced the grain filling period duration in the fourth and fifth sowing dates. The growth period of Kalateh cultivar was shorter than other cultivars (no difference during grain filling period), which caused the plant to escape terminal heat and drought stresses, increasing energy use efficiency and consequently increasing grain yield compared to other cultivars. Therefore, Kalateh cultivar is very suitable and advisable for cultivation in low rainfall areas in northern Golestan province in the second and third sowing dates.

کلیدواژه‌ها [English]

  • Grain yield
  • Energy use efficiency
  • Grian filling period
  • Anthesis
  • Warm and humid agro-climatic zone
1.Ahmad, L., Kanth, R.H., Parvaze, S. and Mahdi, S.S. 2017. Growing DegreeDays to Forecast Crop Stages. P 95-98, In: L. Ahmad., R.H. Kanth., S. Parvaze and S.S. Mahdi (eds.), Experimental Agrometeorology, A Practical Manual, Springer, Jammu and Kashmir.
2.Ahmadi, K., Abadzadeh, H., Abdashah, H., Kazemian, A. and Rafiee, M. 2018. Agricultural Statistics in Crop Season 2016-2017. Publications Ministry of Jihad-e-Agriculture. Tehran, Iran. 124p. (In Persian)
3.Ahmadi, M., Kamkar, B., Soltani, A., Zeynali, E. and Arabameri, R. 2010. The effect of planting date on duration of phonological phases in wheat cultivars and it's relation with grain yield. J. Plant Prod. 17: 2. 109-122. (In Persian)
4.Amrawat, T., Solanki, N., Sharma, S., Jajoria, D. and Dotaniya, M. 2013. Phenology growth and yield of wheat in relation to agrometeorological indices under different sowing dates. Afr. J. Agric. Res. 8: 6366-6374.
5.Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M. and Andarzian, B. 2015. Determining optimum sowing date of wheat using CSM-CERES-Wheat model. J. Saudi. So. Agri. Sci.14: 189-199.
6.Aslam, M.A., Ahmed, M., Stöckle, C.O., Higgins, S.S. and Hayat, R. 2017. Can growing degree days and photoperiod predict spring wheat phenology? Front. Environ. Sci. 5: 57.
7.Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B., Ottman, M.J., Wall, G. and White, J.W. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5: 143.
8.Barlow, K., Christy, B., O’leary, G., Riffkin, P. and Nuttall, J. 2015. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Res. 171: 109-119.
9.Barnabás, B., Jäger, K. and Fehér, A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31: 11-38.
10.Bauer, A., Fanning, C., Enz, J.W. and Eberlein, C. 1984. Use of growing-degree days to determine spring wheat growth stages. Extension bulletin-North Dakota State University of Agriculture and Applied Science, Cooperative Extension Service (USA). 37: 1-12.
11.Camargo, A.V., Mott, R., Gardner, K.A., Mackay, I.J., Corke, F., Doonan, J.H., Kim, J.T. and Bentley, A.R. 2016. Determining phenological patterns associated with the onset of senescence in a wheat MAGIC mapping population. Front. Plant Sci. 7: 1540.
12.Daba, K., Warkentin, T.D., Bueckert, R., Todd, C.D. and Tar’an, B. 2016. Determination of photoperiod-sensitive phase in chickpea (Cicer arietinum L.). Front. Plant Sci. 7: 478.
13.Farooq, M., Bramley, H., Palta, J.A. and Siddique, K.H. 2011. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant. Sci.30: 491-507.
14.Farooq, M., Hussain, M. and Siddique, K.H. 2014. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant. Sci. 33: 331-349.
15.Fischer, R.A. and Stapper, M. 1987. Lodging effects on high-yielding crops of irrigated semidwarf wheat. Field Crops Res. 17: 245-258.
16.Food and Agriculture Organization (FAO) 2019: Available http://www.fao.org/faostat/en/#home. Last accessed 12 October 2019.
17.Ghaffari, A. and Jalal Kamali, M. 2013. Wheat Productivity in Islamic Republic of Iran: Constraints and opportunities.
P 98-11. In R. Paroda., S. Dasgupta., B. Mal., S.S. Singh, M.L. Jat. and G. Singh (eds.) Proceedings of the Regional Consultation on Improving Wheat Productivity in Asia, Bangkok, Thailand.
18.Gouache, D., Le Bris, X., Bogard, M., Deudon, O., Pagé, C., and Gate, P. 2012. Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France. Eur. J. Agron. 39: 62-70.
19.Gudadhe, N., Kumar, N., Pisal, R., Mote, B. and Dhonde, M. 2013. Evaluation of agrometeorological indices in relation to crop phenology of cotton (Gossipium spp.) and chickpea (Cicer aritinum L.) at Rahuri region of Maharashtra. Trends Biosci. 6: 246-250.
20.Gupta, M., Sharma, C., Sharma, R., Gupta, V. and Khushu, M. 2017. Effect of sowing time on productivity and thermal utilization of mustard (Brassica juncea) under sub-tropical irrigated conditions of Jammu. J. Agrometeorol. 19: 137-141.
21.IPCC. 2018. Global Warming of 1.5° C: An IPCC Special Report on the Impacts of Global Warming of 1.5° C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development,and Efforts to Eradicate Poverty, Intergovernmental Panel on Climate Change. 616p.
22.Isidro, J., Álvaro, F., Royo, C., Villegas, D., Miralles, D.J. and García del Moral, L.F. 2011. Changes in duration of developmental phases of durum wheat caused by breeding in Spain and Italy during the 20th century and its impact on yield. Ann. Bot. 107: 1355-1366.
23.Jagadish, K.S., Kishor, K., Polavarapu, B., Bahuguna, R.N., von Wirén, N. and Sreenivasulu, N. 2015. Staying alive or going to die during terminal senescence-an enigma surrounding yield stability. Front. Plant Sci. 6: 1070.
24.Jalal Kamali, M.R. and Sharifi, H.R. 2010. Variation in developmental stages and its relationship with yield and yield components of bread wheat cultivars under field conditions II: Yield andyield components. Seed Plant Prod. J. 26: 1. 1-23. (In Persian)
25.Jalal Kamali, M.R., Sharifi, H.R., Khodarahmi, M., Jokar, R., Torkaman, H. and Ghavidel, N. 2007. Variation in developmental stages and its relationships with yield and yield components of bread wheat cultivars under field conditions I: Phenology. Seed Plant Prod. J. 23: 4. 445-472.(In Persian)
26.Kalateh-Arabi, M., Sheikh, F., Soqi, H. and Hivehchie, J. 2011. Effects of sowing date on grain yield and its components of two bread wheat (Triticum aestivum L.) cultivars in Gorgan in Iran. Seed Plant Prod. J.27: 285-296. (In Persian)
27.Khushu, M., Naseer-U-Rahman, Singh, M., Prakash, A., Tiku, A. and Bali, A. 2008. Thermal time indices for some mustard genotypes in the Jammu region. J. Agrometeorol. 10: 224-227.
28.Kirby, E., Spink, J., Frost, D., Sylvester-Bradley, R., Scott, R., Foulkes, M., Clare, R. and Evans, E. 1999. A study of wheat development in the field: analysis by phases. Eur. J. Agron. 11: 63-82.
29.Koocheki, A., Nassiri Mahallati, M., Sharifi, H.R., Zand, E. and Kamali, G. 2001. A simulation study for growth, phenology and yield of wheat cultivars under the doubled CO2 concentration in Mashhad conditions. Desert. 6: 2. 117-127. (in Persian)
30.LI, Q.Y., Jun, Y., Liu, W.D., Zhou, S.M., Lei, L., Niu, J.S., Niu, H.B. and Ying, M. 2012. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. J. Integr. Agric.11: 405-415.
31.Liu, B., Liu, L., Asseng, S., Zou, X., Li, J., Cao, W. and Zhu, Y. 2016. Modelling the effects of heat stress on post-heading durations in wheat: A comparison of temperature response routines. Agric. For. Meteorol. 222: 45-58.
32.Liu, B., Liu, L., Tian, L., Cao, W., Zhu, Y. and Asseng, S. 2014. Post‐heading heat stress and yield impact in winter wheat of China. Global Change Biology 20: 372-381.
33.Lobell, D.B., Schlenker, W. and Costa-Roberts, J. 2011. Climate trends and global crop production since 1980. Science. 333: 616-620.
34.Mkhabela, M., Ash, G., Grenier, M. and Bullock, P. 2016. Testing the suitability of thermal time models for forecasting spring wheat phenological development in western Canada. Can. J. Plant Sci.96: 765-775.
35.Parmesan, C. and Hanley, M.E. 2015. Plants and climate change: complexities and surprises. Ann. Bot. 116: 849-864.
36.Pérez-Gianmarco, T.I., Slafer, G.A. and González, F.G. 2018. Wheat pre-anthesis development as affected by photoperiod sensitivity genes (Ppd-1) under contrasting photoperiods. Funct. Plant Bio. 45: 645-657.
37.Plant Improvement Section in Golestan Agricultural Jihad Organization. 2019. Wheat statistics in Golestan province. Dedicated access.
38.Plaut, Z., Butow, B., Blumenthal, C. and Wrigley, C. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res. 86: 185-198.
39.Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., Parry, M. and Slafer, G. 2012. Achieving yield gains in wheat. Plant Cell Environ. 35: 1799-1823.
40.Sadras, V.O. and Monzon, J.P. 2006. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 99: 136-146.
41.Salazar-Gutierrez, M., Johnson, J., Chaves-Cordoba, B. and Hoogenboom, G. 2013. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod. 7: 741-762.
42.SAS Institute. 2011. STAT 9.3 User’s guide. SAS Inst., Cary, NC. USA.
43.Semenov, M.A. and Stratonovitch, P. 2013. Designing high‐yielding wheat ideotypes for a changing climate. Food Energy Secur. 2: 185-196.
44.Seyed Ahmadi, A.R., Gharineh, M.H. Bakhshandeh, A.M., Fathi, Gh. and Naderi, A. 2012. Study of phenological and growth of canola cultivars to thermal unit accumulation in three planting dates Ahvaz climate. J. Plant Prod. 19: 4. 97-116. (In Persian)
45.Sharifi, H.R. 2016. Response of phenological development stages, grain yield and yield components of bread wheat cultivars with different growth habits to delayed planting. Seed and Plant Prod. J. 32: 21-44. (In Persian)
46.Sikder, S. 2009. Accumulated heatunit and phenology of wheat cultivarsas influenced by late sowing heattress condition. J. Agric. Rural Dev.7: 1&2. 59-64.
47.Singh, M.P. and Singh, N. 2014. Thermal requirement of indian mustard (Brassica juncea) at different phonological stages under late sown condition. Indian J. Plant Physiol.19: 238-243.
48.Singh, M. and Bhatia, H. 2011. Thermal time requirements for phenophases of apple genotypes in Kullu valley. J. Agrometeorol. 13: 46-49.
49.Singh, S., Kingra, P. and Singh, S.P. 2016. Heat unit requirement and its utilisation efficiency in wheat under different hydrothermal environments. Ann. Agric. Res. 37: 1-11.
50.Slafer, G., Abeledo, L., Miralles, D., Gonzalez, F. and Whitechurch, E. 2001. Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. P 487-496. In , Z. Bedo and L. Lang (eds.), Wheat in a global environment, Springer. Dordrecht.
51.Slafer, G.A. 2012. Wheat development: its role in phenotyping and improving crop adaptation. P 107-121. In: M.P. Reynolds., A.J.D. Pask., and D.M. Mullan (eds.), Physiological breeding I: interdisciplinary approaches to improve crop adaptation. CIMMYT: Mexico-Veracruz, Mexico.
52.Solanki, N.S., Samota, S.D., Chouhan, B.S. and Nai, G. 2017. Agrometeorological indices, heat use efficiency and productivity of wheat (Triticum aestivum) as influenced by dates of sowing and irrigation. J. Pharmacogn. Phytochem. 6: 3. 176-180.
53.Sylvester-Bradley, R., Riffkin, P. and O’Leary, G. 2012. Designing resource-efficient ideotypes for new cropping conditions: wheat (Triticum aestivum L.) in the high rainfall zone of southern australia. Field Crops Res. 125: 69-82.
54.Wang, X., Vignjevic, M., Liu, F., Jacobsen, S., Jiang, D. and Wollenweber, B. 2015. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regul. 75: 677-687.
55.Warthinhton, C. and Hatchinson,C. 2005. Accumulated degree days asa model to determine key development stages and evacuate yield and qualityof potato in Northeast Florida. Proceedings of State Horticulture Society, 118: 98-101.
56.Zhang, X., Gao, M., Wang, S., Chen, F. and Cui, D. 2015. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front. Plant Sci. 6: 470.