1.Gupta, B. and Huang B. 2014. Review Article Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Orporation. Int. J. Genom. 14: 1-19.
2.Munns, R. and Tester, M. 2008. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 59: 651-681.
3.Orhun, G.E. 2016. Biotechnological Methods for the Improvement Cereals. Inter. J. Food Eng. 2: 2. 128-131.
4.Bräutigam, A. and Gowik, U. 2016. Photorespiration connects C3 and C4 photosynthesis. J. Exp. Bot. 67: 2953-2962.
5.Stepien, P. and Klobus, G. 2005. Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol. Plant. 125: 1. 31-40.
6.Jothiramshekar, S., Benjamin, J.J., Krishnasamy, R., Pal, A.K., George, S., Swaminathan, R. and Parida, A.K. 2018. Responses of selected C3 and C4 halophytes to elevated CO2 concentration under salinity. Curr. Sci. 115: 1. 129-135.
7.Feldman, S.R., Bisaro, V., Biani, N.B. and Prado, D.E. 2008. Soil salinity determines the relative abundance of C3/C4 species in Argentinean grasslands. Glob. Ecol. Biogeogr. 17: 6. 708-714.
8.Ma, J.F. and Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11: 8. 392-397.
9.Abdel-Haliem, M.E., Hegazy, H.S., Hassan, N.S. and Naguib, D.M. 2017. Effect of silica ions and nano silica on rice plants under salinity stress. Ecol. Eng. 99: 282-289.
10.Siddiqui, M.H., Al-Whaibi, M.H., Faisal, M. and Al Sahli, A.A. 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ. Toxicol. Chem. 33: 2429-2437.
11.Haghighi, M. and Pessarakli, M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hort. 61: 111-117.
12.Hashemi, A., Abdolzadeh, A. and Sadeghipour, H.R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci. Plant Nutr. 56: 2. 244-253.
13.Soleimannejad, Z., Abdolzadeh, A. and Sadeghipour, H.R. 2019. Beneficial effects of silicon application in alleviating salinity stress in halophytic Puccinellia distans plants. Silicon. 11: 2. 1001-1010.
14.Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N.S. and Prabu, P. 2011. Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int. J. Green Nanotechnol. 3: 180-190.
15.Hurtado, A.C., Chiconato, D.A., de Mello Prado, R., Junior, G.D.S.S. and Felisberto, G. 2019. Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiol. Biochem. 142: 224-233.
16.Tuna, A.L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S. and Girgin, A.R. 2008. Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot. 62: 1. 10-16.
17.Mushtaq, A., Jamil, N., Riaz, M., Hornyak, G.L., Ahmed, N., Ahmed, S.S., Shahwani, M.N. and Malghani, M.N.K. 2017. Synthesis of Silica Nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress. Biol. Forum. 1: 150-157.
18.Tahir, M.A., Rahmatullah, T., Aziz, M., Ashraf, S., Kanwal, S. and Maqsood, M.A. 2006. Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pak. J. Bot.38: 5. 1715-1722.
19.Nabati, J., Kafi, M., Masoumi, A. and Zare Mehrjerdi, M. 2013. Effect of salinity and silicon application on photosynthetic characteristics of sorghum (Sorghum bicolor L.) Int. J. Agric. Sci. 3: 483-492.
20.Liu, P., Yin, L., Wang, S., Zhang, M., Deng, X., Zhang, S. and Tanaka, K. 2015. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ. Exp. Bot. 111: 42-51.
21.Rios, J.J., Martínez-Ballesta, M.C., Ruiz, J.M., Blasco, B. and Carvajal, M. 2017. Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front. Plant Sci. 8: 948.
22.Qados, A. and Moftah, A.E. 2015. Influence of silicon and nano-silicon on germination, Growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am. J. Exp. Agric. 5: 509-524.
23.Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol.
148: 350-382.
24.Sergive, I., Alexieva, V. and Karanov, E. 1997. Effect of spermine, atrazine and combination between them on some endogeneus protective systems and stress markers in plants. Comptes Rendus de Academie Bulg. Des. 51: 121-124.
25.Liu, X. and Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping. Crop Sci.
40: 503-510.
26.Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
27.Kar, M. and Mishra, D. 1976. Catalase, Peroxidase and polyphenolxidase activities during rice leaf senescence. Plant Physiol. 57: 315-319.
28.Liang, Y.C. 1998. Effects of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere. 8: 289-296.
29.Liang, Y., Chen, Q.I.N., Liu, Q., Zhang, W. and Ding, R. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160: 1157-1164.
30.Mali, M. and Aery, N.C. 2008. Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J. Plant Nutr. 31: 11. 1867-1876.
31.Yin, L., Wang, S., Li, J., Tanaka, K. and Oka, M. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant. 35: 11. 3099-3107.
32.Karimi, J. and Mohsenzadeh, S. 2016. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ. J. Plant Physiol. 3: 1. 119-123.
33.Shakeri, E., Emam, Y., Pessarakli, M. and Tabatabaei, S.A. 2020. Biochemical traits associated with growing sorghum genotypes with saline water in the field. J. Plant Nutr. 43: 8. 1136-1153.
34.Matoh, T., Kairusmee, P. and Takahashi, E. 1986. Salt-Induced Damage to Rice Plants and Alleviation Effect of Silicate. Soil Sci. Plant Nutr. 32: 295-304.
35.De Oliveira, R.L.L., de Mello Prado, R., Felisberto, G. and Cruz, F.J.R. 2019. Different sources of silicon by foliar spraying on the growth and gas exchange in sorghum. Soil Sci. Plant Nutr. 19: 4. 948-953.
36.Jamil, M., Lee, K.J., Kim, J.M., Kim, H.S. and Rha, E.S. 2007. Salinity reduced growth PSII photochemistry and chlorophyll content in radish. Sci. Agric. 64: 2. 111-118.
37.Gowayed, M.H., Al-Zahrani, H.S. and Metwali, E.M. 2017. Improving the salinity tolerance in potato (Solanum tuberosum) by exogenous application of silicon dioxide nanoparticles. Int. J. Agric. Biol. 19: 183-194.
38.Moameri, M., Alijafari, E. and Ghorbani, A. 2020. Effect of some growth facilitators on the growth parameters Onobrychis sativa Lam. in greenhouse. J. Plant Res. 32: 4. 886-895.
39.Azevedo Neto, A.D., Prisco, J.T. and Gomes-Filho, E. 2009. Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. J. Plant Interac. 4: 137-144.
40.Alzahrani, Y., Kuşvuran, A., Alharby, H.F., Kuşvuran, S. and Rady, M.M., 2018. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol. Environ. Saf. 154: 187-196.
41.Farhangi-Abriz, S. and Torabian, S. 2018 Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma. 255: 3. 953-962.
42.Tripathi, D.K., Singh, S., Singh, V.P., Prasad, S.M., Chauhan, D.K. and Dubey, N.K. 2016. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front. Environ. Sci. 4: 46-5.