برآورد میزان پتانسیل ترسیب کربن در مزارع سویا با استفاده از شاخص‌های گیاهی سنجش از دور (مطالعه موردی شهرستان گرگان، استان گلستان)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری رشته زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

2 نویسنده مسئول، دانشیار گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

3 استاد گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

4 استاد گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان و دانشگاه فردوسی مشهد، ایران.

چکیده

سابقه و هدف: نگرانی‌های ناشی از مقدار کربن وارد شده به جوّ و اثرات آن روی اقلیم، روز به روز در حال افزایش است. در رویکرد جدید مدیریت بوم نظام‌های کشاورزی، خدمت ترسیب کربن بجای انتشار کربن در حال جایگزین شدن است. از این‌رو، تهیه اطلاعات دقیق از توزیع مکانی میزان زیست‌توده و پتانسیل ترسیب کربن کشت بوم‌ها، یک عامل ضروری است. بنابراین، هدف از این پژوهش، استفاده از شاخص‌های گیاهی سنجش از دور، برای برآورد میزان پتانسیل ترسیب کربن در زیست‌توده گیاهی سویا (Glycine max L.) در زمین‌های زراعی شهرستان گرگان بود.
مواد و روش‌ها: این مطالعه در کشت بوم‌های سویای شهرستان گرگان واقع در استان گلستان در سال زراعی 1396-1395 انجام شد. به منظور انجام این مطالعه، از تصاویر ماهواره سنتینل 2 تاریخ 17/9/2017 استفاده شد. با استفاده از 250 نقطه کنترل‌زمینی، دقت تصاویر بعد از انجام تصحیحات هندسی و رادیومتری مورد بررسی قرار گرفت. در بخش مزرعه ای از 150 مزرعه نمونه‌های گیاهی در مرحله حداکثر رشد رویشی گیاه سویا به صورت تصادفی با استفاده از کوادرات 5/0 × 5/0 تهیه و به آزمایشگاه تحقیقات زراعی دانشگاه علوم کشاورزی و منابع طبیعی گرگان منتقل گردید. سپس وزن خشک نمونه‌های گیاهی محاسبه و با استفاده از روش احتراق میزان کربن موجود در زیست‌توده هوایی تعیین شد. برای تهیه نقشه سطح زیر کشت سویا، از طبقه‌بندی نظارت شده با استفاده از الگوریتم حداکثر و حداقل احتمال اطمینان استفاده گردید. دقت این طبقه‌بندی با واقعیت زمینی بر اساس مقدار صحت کلی و ضریب کاپا مورد ارزیابی قرار‌‌‌گرفت. در این مطالعه شاخص‌های گیاهی شاخص نرمال شده اختلاف پوشش گیاهی ((NDVI، شاخص پوشش گیاهی تفاضلی (DVI)، نسبت شاخص پوشش گیاهی (RVI) و شاخص پوشش گیاهی با اصلاح انعکاس خاک (SAVI) محاسبه شد. سپس رابطه رگرسیونی بین شاخص‌های گیاهی و میزان زیست‌توده و پتانسیل ترسیب کربن در نرم‌افزار SPSS 16، برقرار شد. بعد از انتخاب برترین شاخص گیاهی، در گام بعدی نقشه‌های زیست‌توده گیاهی و میزان پتانسیل ترسیب کربن با استفاده از نرم‌افزار 10.6 Arc GIS تهیه شد. سپس با استفاده از روش‌های گروه‌بندی، میزان زیست‌توده و میزان پتانسیل ترسیب کربن در چهار طبقه تفکیک گردید.
یافته‌ها: در این مطالعه سطح زیرکشت سویا در شهرستان گرگان 71/12333 هکتار برآورد گردید. نتایج نشان داد که مقدار ضریب صحت کلی در روش طبقه‌بندی حداقل فاصله از میانگین، 87 درصد و در روش حداکثر احتمال 92 درصد و مقدار ضریب کاپا نیز به ترتیب برابر با 79/0 و 93/0 بدست آمد. براساس تجزیه رگرسیونی، شاخص DVI برای تهیه نقشه زیست‌توده و پتانسیل ترسیب کربن بخاطر داشتن بیشترین ضریب تبیین (86/0) و کمترین مقدار RMSE انتخاب شد. براساس نتایج، بیشترین مقدار پتانسیل ترسیب کربن از 78/1924 تا 18/2526 کیلوگرم در هکتار، در نواحی مرکزی و شرقی شهرستان، به دست آمد و کمترین مقدار آن از 43/919 تا 83/1313 کیلوگرم در هکتار در نواحی غرب و جنوب غربی شهرستان مشاهده شد.
نتیجه‌گیری: در این آزمایش شاخص DVI توانست برآورد بهتری از پتانسیل ترسیب کربن در مزارع سویا نشان دهد. با توجه به داشتن دقت بالا، سهولت و کم هزینه بودن فناوری سنجش از دور از جمله محاسبه شاخص‌های گیاهی، می‌توان از این فناوری برای تخمین زیست‌توده و برآورد پتانسیل کربن گیاهان زراعی در کشت بوم‌ها استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of carbon sequestration potential in soybean farms using remote sensing plant indices (Case study of Gorgan county, Golestan province)

نویسندگان [English]

  • Samaneh Bakhshandeh 1
  • Hossein Kazemi 2
  • Afshin Soltani 3
  • Behnam Kamkar 4
1 Ph.D. Student of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran
2 Corresponding Author, Associate Prof., Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
3 Professor, Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
4 Professor, Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources and Ferdowsi University of Mashhad, Iran
چکیده [English]

Background and purpose: Nowadays, concerns about the amount of carbon emission to atmosphere and its effects on the climate are increasing. In the new approach to agricultural ecosystem management, carbon sequestration service is being replaced by carbon emissions. Therefore, providing accurate information on the spatial distribution of biomass and carbon sequestration potential of ecosystems is an essential issue. The purpose of this study was to using vegetation index to estimate the potential of carbon sequestration in soybean (Glycine max L.) biomass in the fields of Gorgan county.
Materials and Methods: This study was conducted in soybean fields of Gorgan county, located in Golestan province during 2016-2017. In order to carry out this study, we were used satellite images of Sentinel 2 on 17.9.2017. Also, the accuracy of the images was checked after geometric and radiometric corrections using 250 ground control points. In the field section, plant samples from of 150 points were randomly prepared using 0.5 × 0.5 quadrats in the stage of maximum vegetative growth of soybean and transferred to the agricultural research laboratory of Gorgan University of Agricultural Sciences and Natural Resources. Then, the dry weight of plant samples was calculated and the amount of carbon in the plant biomass (stems and leaves) was determined using the combustion method. To prepare the land use map of soybean cultivation area, the supervised classification was used according to the maximum and minimum reliability algorithm. The accuracy of this classification was assessed by value of overall accuracy and Kappa coefficient. The studied vegetation indices were NDVI (Normalized Difference Vegetation Index), DVI (Deference Vegetation Index), RVI (Ratio Vegetation Index) and SAVI (Soil Adjusted Vegetation index). Then, a regression relationship was established between plant indices and biomass and carbon sequestration potential in SPSS 16 software. After selecting the best vegetation index, plant biomass and carbon sequestration potential maps were prepared using ArcGIS 10.6 software. Then, using classification methods, the final layer was divided into four classes of biomass and carbon sequestration potential.
Results: In this study, the area of soybean cultivation in Gorgan county was estimated as 12333.71 hectares. The results showed that the value of overall accuracy coefficient in the classification method was the minimum distance from the mean, 87% and in the maximum probability method was 92% and the value of Kappa coefficient was 0.79 and 0.93, respectively. Based on the results of regression analysis, DVI index was selected for biomass mapping and carbon sequestration potential due to the highest coefficient of determination (0.86) and the lowest amount of RMSE. Based on the results, the highest amount of carbon sequestration potential was obtained from 1924.78 to 2526.18 kg.ha-1 in the central and eastern parts of this region, and the lowest value estimated as 919.43 to 1313.83 kg.ha-1 that related to western regions of Gorgan.
Conclusion: In this experiment, DVI index indicated a better estimation of carbon sequestration potential in soybean agroecosystems. Due to the high accuracy, easiness and low cost of remote sensing technology, especially calculation of vegetation indices, this approach can used to estimate the biomass and carbon sequestration potential of crops in agroecosystems.

کلیدواژه‌ها [English]

  • Biomass
  • Carbon sequestration
  • Remote sensing
  • Vegetation index
1.Bogunovic, I., Trevisani, S., Pereira, P. and Vukadinovic, V. 2018. Mapping soil organic matter in the Baranja region (Croatia): Geological and anthropic forcing parameters. Sci. Total Environ. 643: 335-345.
2.Nichol, J.F. and Sarker, M.L.R. 2011. “Improved biomass estimation using the texture parameters of two high-resolution optical sensors.” IEEE Trans. Geosci. Rem. Sens. 49: 3. 930-946.
3.Ghasemi, N., Sahebi, M.R. and Mohammadzadeh, A. 2013. “Biomass estimation of a temperate deciduous forest using wavelet analysis.” IEEE Trans. Geosci. Rem. Sens. 51: 2. 765-776. (In Persian)
4.Abdi, N., Madah Arefi, H. and Zahedi Amiri, J. 2009. Estimation of carbon sequestration in Gon rangelands of Markazi province (Case study: Malmir rangeland in Shazand region). Iran. Rangel. Desert Res. 15: 2. 269-282.(In Persian)
5.Bao, Y., Gayo, W. and Gayo, Z. 2009. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions. Earth Sci.3: 1. 118-128.
6.Chao, ZH., Liu, N., Zhang, P., Ying, T. and Song, K. 2019. Estimation methods developing with remote sensing information for energy biomass: A comparative review. Biomass Bioenergy. 122: 414-425.
7.Pordel, F., Ebrahimi, A. and Azizi, Z. 2017. Modeling of canopy green cover of coral rangeland vegetation during the growing season using spectral parameters of OLI sensor. J. Surv. Sci. Technol.7: 6. 36-44. (In Persian)
8.Zheng, G., Chen, J. and Tian, Q. 2007. Combining remote sensing imagery and forest age inventory. J. Environ. Manage. 85: 3. 616-623.
9.Liu, P. 2015 “A survey of remote-sensing big data”. Front. Environ. Sci. 3: 1-6.
10.Chi, M., Plaza, A., Benediktsson, J.A., Sun, Z., Shen, J. and Zhu, Y. 2016.“Big data for remote sensing: Challenges and opportunities.” Proc. IEEE. 104: 2207-2219.
11.Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N. and Shearer, S. 2018. “Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield.” Comput. Elec. Agric. 153: 213-225.
12.Zarrine, A., Naderi Khorasgani, M. and Asadi Brojeni, A. 2012. Estimation of range land cover in Tang Sayad region (Chaharmahal and Bakhtiari province) using IRS-P6LISS-III satellite data. Environ. Sci. 37: 61. 117-130. (In Persian)
13.Shafiee, H. and Hosseini, S.M. 2012. Survey of vegetation with the help of satellite data in Sistan region. J. Plant Ecol. 3: 91-105. 35-49. (In Persian)
14.Mohammadi, M., Ebrahimi, A. and Haghzade, A. 2012. Capability of IRS satellite data in estimating vegetation canopy (Case study: Chaharmahaland Bakhtiari). J. Rene. Nat. Res.3: 1. 41-54. (In Persian)
15.Fathololoumi, S., Vaezi, A.R., Alavipanah, S.K. and Ghorbani, A. 2020. Modeling Soil Organic Carbon Variations Using Remote Sensing Indices in Ardabil Balikhli Chhay Watershed. Iran. Soil Water Res.51: 2417-2429. (In Persian)
16.Elahee, F. 2016. Assessment of wheat and canola residues as capability in four basins of Golestan province. Master Thesis. Gorgan University of Agricultural Sciences and Natural Resources. 76p. (In Persian)
17.Yousefi, S., Tazeh, M., Mirzaee, S., Moradi, H.R. and Tavangar, F. 2011. Comparison of different classification algorithms in satellite imagery to produce land use map (Case study: Noor city). J. Appl. RS GIS Tech. Nat. Res. Sci. 2: 15-23.
18.Uttaruk, Y. and Laosuwan, T. 2016. Remote sensing based vegetation indices for estimating above ground carbon sequestration in Orchards. Agric. Forest. 62: 4. 193-201.
19.Neumann, M. and Smith, P. 2018. Carbon uptake by European agricultural land is greater than in forests and could be increased further. Sci. Total Environ. 643: 902-911.
20.Bindu, G., Poornima Rajan, E.S., Jishnu, K. and Ajith, J. 2020. Carbon stock assessment of mangroves using remote sensing and geographic information system. Egypt. J. Remote Sens. Space Sci. 23: 1. 1-9.
21.Griebel, A., Metzen, D., M Boer, M., Brton, C.V.M. Renchon, A.A., Andrews, H.M. and Pendall, E. 2020. Using a paired tower approach and remote sensing to assess carbon sequestration and energy distribution in a heterogeneous sclerophyll forest. Sci. Total Environ. 699: 13-39.
22.Alizadeh, P., Kamkar, B., Shataee, S. and Kazemi, H. 2018. Estimation of changes in land area under wheat and soybean cultivation using satellites images classification techniques in west of Golestan province. Appl. Res. Field. Crops. 31: 41-61. (In Persian)
23.Ministry of Agriculture Jihad. 2016. Agricultural Statistics: Crop Products. First Volume. Center for Statistics and Information. (In Persian)
24.Alavi Panah, S.K. 2008. Application of Remote Sensing in Earth Sciences, University of Tehran Press. 478p.
(In Persian)
25.Mishra, N., Haque, M.O., Leigh, L., Aaron, D., Helder, D. and Markham, B. 2014. Radiometriccross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+). Rem. Sens.6: 12. 12619-12638.
26.Fatemi, B. and Rezaee, Y. 2010. Fundamentals of Remote Sensing. Azadeh Publications. 25p. (In Persian)
27.Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Toulios, L. and Clayton, C.R.I. 2010. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10: 89-95.
28.Ahrari, A.H. 2018. Training in processing and preparing Sentinel satellite data 2. Amirkabir Univ. Technology Publications. 57p. (In Persian)
29.Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25: 295-309.
30.Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. 1974. Monitoring the vernal advancement and retrogradiation (green wave effect) of natural vegetation. NASA/GSFC, Type III, final report, Greenbelt, MD.
31.Pocas, I., Cunha, M., Pereira, L.S. and Allen, R.G. 2013. Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. Int. J. Appl. Earth Obs. Geoinf. 21: 159-172.
33.Damavandi, H. and Darvish Sefat, A.A. 1999. Investigation of the use of satellite data in the identification and classification of saline lands by digital method. P 238-254. The 6th Tehran Surveying Conference. (In Persian)
34.Chuanga, W.C., Lina, C.Y., Chiena, C.H. and Choub, W.C. 2011. Application of Markov-Chain model for vegetation restoration assessment and landslide areas caused by a catastrophic earthquake in Central Taiwan. Ecol. Modell. 222: 835-845.
35.Mather, P.M. and Tso, B. 2009. Classification methods for remotely sensed data. CRC Press, New York.
36.Darvish Sefat, A.A. and Zare, A. 1998. Investigation of satellite data capability for preparing vegetation map in arid and semi-arid regions (Case study: in Ghaen region). Iranian J. Nat. Res. Fac. Nat. Res. 51: 2. 47-52. (In Persian)
37.Akbari Poursalimi, S. and Nickfar, M. 2018. Prediction of urban development using Sentinel satellite images by neural network method. J. Technol. Aerosp. Eng. 2: 3. 22-13. (In Persian)
38.Khajeddin, S. and Pormanafi, S. 2007. Determining the level of Zayandehrood rice fields in Isfahan region with digital data from IRS satellite sensors. J. Agric. Sci. Technol. Nat. Res. 11: 1. 513-527. (In Persian)
39.Mayer, D.G. and Butler, D.G. 1993. Statistical validation. Ecol. Model.68: 21-32.
40.Power, M. 1993. The predictive validation of ecological and environmental methods. Ecol. Model. 68: 33-50.
41.Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M. and Whitmore, A.P. 1997. A comparison of the performance of nine soilorganic matter models using datasets from seven long-term experiments. Geoderma. 81: 153-225.
42.Polidori, A., Turpin, B.J., Davidson, C.I., Rodenburg, L.A. and Maimone, F. 2008. Organic PM2.5: fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the Pittsburgh aerosol. Aerosol Sci. Technol. 42: 233-246.
43.Fahim Nejad, H., Soof Baf, S.R., Alimohammadi, A. and Valdan Zooj, M.J. 2007. Differentiation of agricultural products using Hyperion hyperspectral data, Geomatics Conference, Tehran.(In Persian)
44.Ziaeian Firoozabadi, P., Sayyad Bidhendi, L. and Eskandari Node, M. 2009. Preparing a map and estimating the area under rice cultivation in Sari city using radar satellite images. Nat. Geo. Res. 68: 45-58. (In Persian)
45.Rezaei, M., Raeini Sarjaz, M., Shahnazari, A. and Vazifedoust, M. 2014. Estimation of paddy fieldrice yield in the Sephidrood using Landsat images (case study: Some Sara). Iranian J. Irrig. Drain. 3: 8. 591-601.(In Persian)
46.Aricak, B. 2015. Estimating above-ground carbon biomass using Satellite image reflection values: A case study in camyazi forest directorate, Turkey. Sumar. List. 139: 7-8. 369-376.
47.Roujean, J.L. and Breon, F.M.1995. Estimating PAR absorbed byvegetation from bidirectional reflectance measurement. Remote Sens. Environ. 51: 375-384.
48.Darvishzade, R., Metkan, A.A. and Eskandari, N. 2011. Evaluation of spectral indices extracted from ALOS-AVNIR2 images to estimate the biomass of rice crop. Geograph. Lands. 14: 61-73. (In Persian)
49.Poorghayyomi, H. and Khajeddin, S.J. 2011. Investigating the role of vegetation in carbon sequestration using remote incineration technology. Master Thesis, Isfahan University of Technology. Fac. Nat. Res. 138p.(In Persian)