تأثیر نسبت‌های مختلف نیتروژن بر باززایی و تولید متابولیت‌های ثانویه در گل سوسن چلچراغ

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استاد گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانش‌‌آموخته کارشناسی‌ارشد گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استادیار گروه علوم باغبانی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

سابقه و هدف: سوسن چلچراغ با نام علمی ‌Lilium ledebourii Bioss از گل‌های نادر و متعلق به خانواده سوسن‌هاست که دارای متابولیت‌های ثانویه با ارزشی است. این گیاه به عنوان یکی از گلهای محبوب کاربردهای زیادی از قبیل استفاده به عنوان گل بریده، گل گلدانی و گیاه فضای سبز در دنیا دارد. ریزازدیادی با استفاده از ترکیبات هورمونی مختلف و مواد تحریک کننده رشد در این گیاه انجام گرفته است. هدف از انجام این پژوهش ارزیابی تأثیر نسبت‌های مختلف نیتروژن بر باززایی و تولید متابولیت ثانویه تحت شرایط درون شیشه‌ای است.
مواد و روش‌ها: به‌منظور بررسی اثر نسبت‌های مختلف نیتروژن بر باززایی و تولید متابولیت‌های ثانویه در گل سوسن چلچراغ آزمایشی بصورت فاکتوریل در قالب طرح کاملاً تصادفی با 10 تیمار و 8 تکرار با استفاده از غلظت های مختلف نیتروژن (نیترات به آمونیم) در آزمایشگاه کشت‌بافت و بیوتکنولوژی گروه علوم باغبانی دانشگاه محقق اردبیلی انجام شد. در این پژوهش از محیط کشت MS استفاده شد. شاخص‌های مورفولوژیکی اندازه گیری شده در این پژوهش شامل: وزن تر گیاهچه، ارتفاع گیاهچه، تعداد برگ، طول برگ، تعداد ریشه، طول ریشه، تعداد پیازچه، قطر پیازچه و تعداد فلس بود. شاخص‌های بیوشیمیایی اندازه‌گیری شده نیز شامل کلروفی a، کلروفیل b، کلروفیل کل، فلاونوئید در سه طول موج 270، 300 و 330 نانومتر، کاروتنوئید، آنتوسیانین و فنل بود.
یافته‌ها: نتایج پژوهش نشان داد که تیمارهای مختلف به طور معنی‌داری (در سطح احتمال 5%) شاخص محتوای فنل کل، آنتوسیانین، کلروفیل a، b و کل، وزن‌تر گیاهچه، ارتفاع گیاهچه، تعداد ریشه و پیازچه‌ باززایی شده را تحت تأثیر قرار داد. بیش‌ترین غلظت فنل کل، آنتوسیانین، وزن‌تر و ارتفاع گیاهچه مربوط به تیمار نیتروژنی با نسبت نیترات به آمونیوم 40:40 بود. در مورد کلروفیل a، b و کل بهترین تیمار مربوط به تیمار نیتروژنی نسبت نیترات به آمونیم 60:25 بود. برای تعداد ریشه و پیازچه نیز بهترین تیمارها مربوط به تیمار نیتروژنی نسبت نیترات به آمونیم 40:40، 40:25، 60:25 و 40:0 بود. بیشترین میزان کارتنوئید (838/4 میلی‌گرم بر گرم وزن تر) مربوط به تیمار نیتروژنی با نسبت 80:25 نیترات به آمونیوم حاصل شد که با تیمار شاهد و سایر تیمارها از این لحاظ اختلاف معنی‌داری نشان داد. همچنین کم‌ترین میزان این شاخص (0 میلی‌گرم بر گرم وزن تر) مربوط به تیمار نیتروژنی با نسبت 40:120 و 0:25 نیترات به آمونیوم حاصل شد که با تیمار شاهد اختلاف معنی‌داری داشت
نتیجه‌گیری: در این پژوهش نسبت نیترات به آمونیوم 40:40 در مقایسه با سایر تیمارها تأثیر بهتری بر شاخص‌های اندازه‌گیری شده داشت و تجمع بیش از حد آمونیوم در بافت‌های گیاهی موجب اختلال در رشد نرمال شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of different ratios of nitrogen on regeneration and secondary metabolite production of Lilium ledebourii

نویسندگان [English]

  • Esmaeil chamani 1
  • Sheyda Aminian 2
  • Younes Pourbeyrami hir 3
1 Corresponding Author, Professor, Dept. of Horticulture, University of Mohaghegh Ardabili, Ardabil, Iran.
2 M.Sc. Student, Dept. of Horticulture, University of Mohaghegh Ardabili, Ardabil, Iran
3 Assistant Prof., Dept. of Horticulture, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Background and objective: Lilium ledebourii Bioss is a rare species belonging to the Liliaceae family, containing valuable secondary metabolites. This flower is one of the most popular plants in the word which used as a cut flower, pot flower and bedding plants .Micro propagation was done in this flower by used of different hormonal combinations and elicitors. The goal of this study was to evaluate the effects of various nitrogen ratios on in vitro regeneration and secondary metabolite production.
Materials and Methods: In order to study the effects of different nitrogen ratios on the regeneration and secondary metabolite production of Lilium ledebourii, an experiment was conducted based on the completely randomized design with 10 treatments and 8 replications in tissue culture and biotechnology laboratory of the Horticultural Department of Mohaghegh Ardabili University. The MS medium were used to culture the explants. In this experiment some morphological traits were evaluated such as fresh weight, plant height, leaf number, leaf length, root number, root length, bulblet number, bulblet diameter and scale number. The measured biochemical traits were total Chlorophyll, chlorophyll b, chlorophyll a, carotenoid, Flavonoid in 3 different waves (270, 300 and 330 nm), anthocyanin and phenol.
Results: The results of the experiment showed that various treatments significantly (P≤0.05) affected total phenol content, anthocyanin, chlorophyll a, b, and total chlorophyll, fresh weight, seedling height, regenerated root and bulb number. The highest value of total phenol and anthocyanin contents, fresh weight and seedling height was observed in nitrate to ammonium ratio of 40:40. However, the best treatment for chlorophyll a, b and total chlorophyll, was the ratio of nitrate to ammonium at the rate of 60:25. Also, in the case of root and bulblet number, the best treatments were ratios of nitrate to ammonium at the rates of 40:40, 40:25, 60:25 and 40:0. The comparison of means of dada showed that the highest content of carotenoid (4.838 mg/g Fw) was obtained from 80:25 ratio of nitrate to ammonium which had the significant differences with control and other treatments. However, the lowest content of this index was observed in nitrate to ammonium at the rates of 40:120 and 0:25 which also had the significant differences with control.
Conclusion: In general, the nitrate to ammonium ratio of 40:40 in compared to the other treatments had the better effects of measured indices and accumulation of ammonium in the plants texture was interrupted for the normal growth.

کلیدواژه‌ها [English]

  • Anthocyanin
  • In Vitro
  • ‌Lilium ledebourii
  • Micropropagation
  • Tissue culture
1.Azad, P. and Khosh-Khui, M. 2007. Micropropagation of Lilium Ledebourii bioss. as affected by plant growth regulator, sucrose concentration, harvesting season and cold treatments. J. Biotech. 10: 4. 583-591.
2.Walpola, B.C. and Arunakumara, K.K. 2017. Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils. Agric. Sci. J. 5: 1. 9-18.
3.Khan, A.S., Ul-Allah, S. and Sadique, S. 2010. Genetic variability and correlation among seedling traits of wheat (Triticum sativum) under water stress. Agric. Biology J. 12: 2. 247-250.
4.Amobeigi, M. and Razavizadeh, R. 2013. Effects of drought stress and PBA on flavnoid accumulation and minerals in Brassica napus. J. Plant Echophysiol.8: 31.12-22. (In Persian)
5.Kusano, T., Berberich, T., Tateda, C. and Takahashi, Y. 2008. Polyamines: essential localizations of anthocyanin in arabidopsis. Plant Signaling Behavior J. 10: e1027850.
6.Dami, I. and Hughes, H. 1995. Leaf anatomy and water loss of in-vitro polyethylene glycol treated of ‘Valiant’ Grape. Plan.t Cell. Tiss. Organ Cul. J.42: 2. 179-184.
7.Georgieva, M.D., Djilianov, D., Konstantinova T. and Parvanova, D. 2004. Screening of bulgarian raspberry cultivars and elites for osmotic tolerance in-vitro. Biotech. Equipment J. 18: 2. 95-98.
8.Naveed, M.S., Manzoor, A., Javed, A. and Tariq, M.A. 2019. In-vitro screening of different tomato genotypes against peg induced water stress. World J. Bio. Biotech. 4: 15-19.
9.Raj, R.N., Gokulakrishnan, J. and Prakash, M. 2020. Assessing drought tolerance using PEG-6000 and molecular screening by SSR markers in maize(Zea mays L.) hybrids. Maydica. 64: 7p.
10.Kaur, A. and Sarlach, R.S. 2020. Leaf area, relative water content and stay-green habit of iranian landraces (Triticum aestivum L.) under water stress in field conditions. Adv. Res.21: 1-13.
11.Li, W., Wang, Y. and Zhang, Y. 2020. Impacts of drought stress on the morphology, physiology, and sugar content of Lanzhou lily (Lilium davidii var. unicolor). Acta Physiol. Plant.42: 127.
12.Turan, T.O. and Ekmekci, Y. 2009. Effect of water deficit induced by PEG and NaCl on chickpea (Cicer arietinum L.) cultivars and lines at early seedling stages. J. Sci. 22: 1. 5-14.
13.Bates, L., Waldren, P.P. and Teare, J.D. 1973. Rapid determination of the free proline of water stress studies. Plant Soil J. 39: 201-205.
14.Slinkard, K. and Singleton, V.L. 1997. Total phenol analysis: automation and comparison with manual methods. American Soc. Eno. Viti. J. 28: 49-55.
15.Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management, Argon. Sustain J. Dev.29: 185-212.
16.Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M. and Panneerselvam, R. 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and surfaces B. Biointer. J. 61: 298-303.
17.Irrigoyen, J.H., Emerich, D.W. and Sanchez Diaz, M. 1992. Water stress induced changes in concentration of proline and total soluble sugars in nodulated alfalfa plant. Phys. Plantarum J. 84: 55-66.
18.Burnett, S., Thomas, P. and Van Iersel, M. 2005. Post germination drenches with Polyethylene Glycol 8000 reduce growth of salvia and marigolds. Hort. Sci. J. 40: 675-679.
19.Rani Roy, M., Rais Uddin Rashed, M.D. and Sharmin Mitu, A. 2017. Screening and diversity of drought tolerance genotypes in-vitro in tomato. Agric. Res. Tech. J. 4: 2.1-6.
20.Abdolrahman, R.A., Gaber, Hanan, A.M.M., AL-Sayed, M.A. and Smetanska, I. 2012. Effect of drought and salinity stress on total phenolic, flavonoids and flavanols contents and antioxidant activity in-vitro sprout cultures of garden cress (Lepidium sativum). Appl Sci. Res. J. 8: 8. 3934-3942.
21.Hernandez-Perez, C.A., Gomez-Merino, F.C., Spinoso-Castillo, J.L. and Bello-Bello, J.J. 2021. In-vitro screening of sugarcane cultivars (Saccharum spp. Hybrids) for tolerance to polyethylene glycol-induced water stress. Agron.11: 598.
22.Bhatt, R.M. and Srinivasa Rao, N.K. 2005. Influence of pod load on response of okra to water stress. Indian J. Plant Phys. 10: 1. 54-59.
23.Colom, M.R. and Vazzana, C. 2003. Photosynthesis and PSII functionality of drought resistant and drought sensitive weeping love grass plants. Environ. Exper. Bot. 49: 135-144.
24.Jangpromma, N., Kitthaisong, S., Lomthaisong, K., Daduang, S., Jaisil, P. and Thammasirirak, S. 2010. A proteomics analysis of drought stress responsive proteins as biomarker for drought tolerant sugarcane cultivars. American J. Biochem. Biotech. 6: 2.89-102.
25.Nasir Khan, M., Siddiqui, M.H., Mohammad, F., Masroor, M., Khan, A. and Naeem, M. 2007. Salinity induced changes in growth, enzyme activities, photosynthesis. Proline accumulation and yield in linseed genotype. Agric. Sci. J. 3: 685-695.
26.Ghorbanli, M., Bakhshi Khaniki, G.R., Salimi Elizei, S. and Hedayati, M. 2010. Effect of water deficit and its interaction with ascorbate on proline, soluble sugars, catalase and glutathione peroxidase amounts in (Nigella sativa L.). Med. Arom. Plants J. 26: 465-476.
27.Heidari-Sharifabad, H. 2001. Plants, aridity and drought research. Inst. Forest. Rang. Press J. 200p.
28.Razavizadeh, R., Shafghat, M. and Najafi, Sh. 2014. The effect of water shortage stress on morphological and physiological characteristics of Carum copticum. J. Plant Bio. Iran. 6: 22. 25-38. (In Persian)
29.Mamnoei, E. and Seyyed Sharifi, R. 2010. Study the effects of deficit on chlorophyll fluorescence indices and the amount of proline in six barely genotypes and its relation with canopy temperature and yield. Plant Bio. J.2: 5. 51-62.
30.Aliabadi, F.H., Lebaschi, M.H., Shiranirad, A.H., Valadabadi, A.R. and Daneshian, J. 2008. Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of coriander (Coriandrum sativum L.). Med. Plant Res. J. 2: 6. 125-131.
31.Arndt, S.K.K., Clifford, S.C., Wanek, W., Jones, H.G. and Popp, M. 2001. Physiological and morphological adaptations of the fruit tree ziziphus rotundifolia in response to progressive drought stress. Tree Phys. J. 21: 705-715.
32.Serraj, R. and Sinclair, T.R. 2002. Osmolyte accumulation: can it really help increase crop yield under droughtconditions. Plant cell. Environ. J.25: 333-341.
33.Aran, M., Abedi, B., Tehranifar, A. and Parsa, M. 2017. Effect of drought stress on morphological and physiological traits of grape. Hort. Sci. J. 31: 2. 315-326.
34.Bano, A., Ullah, F. and Nosheen, A. 2012. Role of absicisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ J. 58: 4. 181-185.
35.Dehghani Bidgoli, R. 2018. The effect of drought and salinity stresses on some secondary metabolites of Rosmarinus officinalis. J. Plant Ecophys. App. Res. 5: 1. 27-51. (In Persian)
36.Anjum, N.A., Arena, C. and Singhgill, S. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS scavengers during environmental stress in plant. Frontiers in Environ Sci. 2: 1-13.
37.Fabriki Orang, S. and Davudnia, B. 2019. Investigation of changes in growth traits and secondary metabolites in medicinal plant of Thymus vulgaris L. under mild salinity and drought stress. J. Med. Plants Ecophyt. 22: 2. 27-40.
(In Persian)
38.Farah, S., Hosseinian, A., Wende Li, A. and Trust, B. 2008. Measurement of anthocyanin’s and other phytochemicals in purple wheat. Food Chem. 109: 916-924.
39.Bolat, I., Dikilitas, M., Ercisli, S.,Ikinci, A. and Tonkaz, A.T. 2014.The effect of water stress on some morphological physiological, and biochemical characteristics and bud successon apple and quince rootstocks. The Scientific World J. pp. 1-9.
40.Epstein, E. 1994. The anomaly ofsilicon in plant biology. Proceedingsof the National Academy of Sci.91: 11-17.
41.Fu, J. and Huang, B. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exper. Bot. J. 45: 2. 105-114.
42.Ilektra, S. and Michael, M. 2012. Interaction of proline, sugars and anthocyanin’s during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Plant Phys. 169: 577-585.
43.Tohidi, Z. 2015. The effect ofdrought stress on physiological characteristics of plants. Malaysia international conference on research in science and technology. pp. 1-7.
44.Setayeshmehr, Z. 2012. Effect of drought stress on growth rate, proline content and photosynthetic pigments of Antheum graveolens. The first national conference of biotechnology students of GolestanUniv. Gorgan, Iran.
45.Ashraf, M. and Farooq, M. 2005.Pre-Sowing seed treatment a shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv. Agron. J. 88: 223-271.
46.Kramer, P.J. 1980. Drought stress, and the origins of adaptations. Adaptation of plants to water and high temperature stress. New York, Wiley. pp. 7-22.