1.De Pascale, S., Dalla Costa, L., Vallone, S., Barbieri, G. and Maggio, A. 2011. Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. Hort. Tech. 21: 3. 301-308.
2.Mattioli, R., Marchese, D.D., Angeli, S., Altamura, M.M., Costantino, P. and Trovato, M. 2008. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol. Biol. 66: 277-288.
3.Cabot, C., Sibole, J.V., Barcelo, J. and Poschenrieder, C. 2014. Lessons from crop plants struggling with salinity. Plant Sci. 226: 2-13.
4.Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z.K., Khan, A.L., Khan, A. and Ahmed, A.H. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 209: 21-32.
5.Oliveira, V.P., Marques, E.C., Lacerda, C.F., Prisco, J.T. and Gomes Filho, E. 2013. Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development. African J. Agric. Res. 8: 660-670.
6.Salimi, F., Shekari, F., Azimi, M.R. and Zangani, E. 2012. Role of methyl jasmonate on improving salt resistance through some physiological characters in German chamomile (Matricaria chamomilla L.). Iranian Plant Biol. J. 27: 700-711. (In Persian)
7.Kibria, M.G., Hossain, M., Murata, Y. and Hoque, M.A. 2017. Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Sci. 24: 155-16.
8.Zheng, J., Ma, X., Zhang, X., Hu, Q. and Qian, R. 2018. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions. Physiol. Mol. Biol. Plants. 24: 2. 231-238.
9.Hashemi Esfahani, A. 2000. Promotion of Modern Floriculture. Nasagh Publ. (In Persian)
10.Ahmadi, Y., Khosh-Khui, M., Salehi, H., Eshghi, S., Kamgar Haghighi, A.A. and Karami, A. 2019. Effect of Salinity Stress on Growth and Biochemical Characteristics of Three Population of Damask Rose of Iran. Iranian J. Hort. Sci. Tech. 20: 1. 89-98.
11.Aghaei Joubani, K., Taei, N., Kanani, M.R. and Yazdani, M. 2015. Effect of salt stress on some physiological and biochemical parameters of two Salvia species. J. Plant Proc. Func. 3: 9. 85-96.
12.Momenpour, A. and Imani, A. 2019. Effect of salinity stress on growth characteristics of selected almond (Prunus dulcis) genotypes. J. Plant Prod. Res. 26: 2. 29-46.
13.Roozbahani, F., Mousavi-Fard, S. and Rezaeinejad, A. 2020. Effect of proline on some physiological and biochemical characteristics of two cultivars of Impatiens walleriana under salt stress. Iranian J. Hort. Sci. 51: 3. 537-549.
14.Lichtenthaler, H.K. 1987. Chlorophylls and cartenoides pigments of hotosynthetice biomembranes. Meth. in Enzym. 148: 350-382.
15.Buege, J.A. and Aust, S.D. 1978. Microsomal lipid peroxidation. Meth. in Enzyme. 52: 302-310.
16.Lutts, S., Kinet, J.M. and Bouharmont, J. 1996. NaCl-induced senescence inleaves of rice (Oryza sativa L.) cultivars differing in salinitary resistance. Ann. Botany. 78: 3. 389-398.
17.Ritchie, S.W. and Hanson, A.D. 1990. Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 30: 105-111.
18.Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil J. 39: 205-207.
19.Bremner, J.M., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabian, M.A., Johnston, C.T. and Sumner, M.E. 1996. Nitrogen-total. Methods of Soil Analysis. Part 3-Chem. Meth. pp. 1085-1121.
20.Chapman, H.D. and Pratt, P.F. 1962. Methods of Analysis for Soils, Plants and Waters. Soil Sci. 93: 1. 60-62.
21.Chance, B. and Maehly, A.C. 1995. Assay of catalas and proxidase. In: Colowick, S.P., and N.D. Kaplan (eds). Meth. in Enzym. Academic Press. New York. 2: 764-775.
22.MacAdam, J.W., Nelson, C.J. and Sharp, R.E. 1992. Peroxidase Activity in the leaf elongation zone of tall fescue I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol. 99: 3. 872-878.
23.Siahmansour, S., Ehtesham-Nia, A. and Rezaeinejad, A. 2020. Effect of salicylic acid foliar application on Morpho- physiological and biochemical traits of Goldenberry (Physalis peruviana L.) under salinity stress condition. J. Plant Prod. Res. 27: 1. 165-178.
24.Taheri, S., Barzegar, T., Rabiee, V. and Angourani, H. 1393. Physiological responses of two basils (Ocimum basilicum L.) cultivars to salicylic acid spraying under salinity stress. Agric. crop Manage. J. 18: 1. 259-274. (In Persian)
25.Ashraf, M. and Foolad, M.D. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. J. Environ. Exp. Bot. 59: 206-216.
26.Sairam, R.K., Rao, K.V. and Srivastava, G.C. 2002. Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. J. 163: 1037-1046.
27.Gill, S.S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance
in crop plants. Plant Physiol. Bioch. 48: 909-930.
28.Yildiz, M. and Terzi, H. 2013. Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi. J. Agric. Sci. 19: 79-88.
29.Sairam, R.K. and Tyagi, A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Sci. 86: 406-412.
30.Candan, N. and Tarhan, L. 2003. The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci. 163: 769-779.
31.Noctor, G. and Foyer, C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol. J. 49: 249-279.
32.Delavari Parizi, M., Baghizadeh, A., Enteshari, S. and Manouchehri Kalantari, K. 2012. The study of the interactive effects of salicylic acid and salinity stress on induction of oxidative stress and mechanisms of tolerance in Ocimum basilicum L. Iranian J. Plant Biol. 4: 12. 25-36.
33.Vafadar, Z., Rahimmalek, M., Sabzalian, M.R. and Nikbakht, A. 2018. Effect of salt stress and harvesting time on morphological and physiological characteristics of Myrtle (Myrthus communis) J. Plant Proc. Func. Iranian Soc. Plant Physiol. 23: 7. 34-46.
34.Awad, A.S., Edwards, D.G. and Campbell, L.C. 1990. Phosphorus enhancement of salt tolerance of tomato. Crop Sci. 30: 1. 123-128.
35.Papadopoulos, I. and Rendig, V.V. 1983. Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant and Soil. 73: 1. 47-57.
36.Sato, S., Sakaguchi, S., Furukawa, H. and Ikeda, H. 2006. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (lycopersicon esculentummill.). Sci. Horticul. 109: 248-253.
37.Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol. 31: 1. 149-190.
38.Shibli, R.A., Shatnawi, M.A. and Swaidat, I.Q. 2003. Growth, osmotic adjustment, and nutrient acquisition of bitter almond under induced sodium chloride salinity in vitro. Comm. Soil Sci. Plant Anal. 34: 13-14. 1969-1979.
39.Mousavi, A., Lessani, H., Babalar, M., Talaei, A.R. and Fallahi, E. 2008. Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J. Plant Nut. 31: 11. 1906-1916.
40.Wi, S.G., Chung, B.Y., Kim, J.H., Lee, K.S. and Kim, J.S. 2006. Deposition pattern of hydrogen peroxide in the leaf sheaths of rice under salt stress. Biol. Plant. 50: 469-472.
41.Zheng, J., Ma, X., Zhang, X., Hu, Q. and Qian, R. 2018. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions. Physiol. Mol. Biol. Plants. 24: 2. 231-238.
42.Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 1-26.
43.McDonald, M.B. 1999. Seed deterioration: physiology, repair, and assessment. Seed Sci. Technol. 27: 11. 177-237.
44.Appel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Ann. Rev. Plant Biol. 55: 373-399.
45.Hagh, A.B., Kazemi, H., Valizadeh, M. and Javanshir, A. 2004. Resistance of spring wheat cultivars (Triticum aestivum L.) to salinity salt tolerance in vegetative and reproductive stages. Iranian J. Agri. Sci. 35: 1. 61-71.
46.Rezaei, M.AM., Khavarinejad, R.F. and Fahimei, H. 2004. Physiological response of cotton plant to different soil salinities. Res. Construc. 62: 81-89.
47.Talwar, H.S., Kumari, A., Surwenshi, A. and Seetharama, N. 2011. Sodium: potassium ratio in foliage as an indicator of tolerance to chloride-dominant soil salinity in oat (Avena sativa). Indian J. Agric. Sci. 81: 481-484.