پارامتریابی و ارزیابی مدل SSM-iCrop2 برای شبیه‌سازی رشد و عملکرد گیاه برنج در ایران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری زراعت، گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، دانشیار گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استاد گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 دانشیار گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

سابقه و هدف: برنج یکی از مهم‌ترین غلات و غذای اصلی بسیاری از مردم جهان است. برای شناسایی امکان تامین غذای جمعیت جهان، با توجه به لزوم تداوم تولید در کشاورزی پایدار، پیش‌بینی درست عملکرد گیاهان زراعی امری لازم و ضروری است. به‌ منظور، مدل‌سازی مراحل رشد و عملکرد برنج بر اساس آمار هواشناسی کشور ایران، مطالعه‌ای در دانشگاه علوم کشاورزی و منابع طبیعی گرگان صورت گرفت. هدف از این مطالعه استفاده از مدل ساده SSM-iCrop2 برای شبیه‌سازی رشد و عملکرد برنج به‌ منظور بررسی اثرات عوامل آب و هوایی، خاک، مدیریت زراعی و تعیین ضرایب ژنتیکی برنج در شرایط کشور ایران بود. با توجه به توانایی مناسب مدل در شبیه‌سازی برنج، می‌توان از آن به عنوان ابزار مناسبی برای برنامه‌ریزی و مدیریت بهتر مزارع برنج در کشور استفاده نمود.
مواد و روش‌ها: در این مطالعه از مدل SSM-iCrop2 برای شبیه‌سازی پتانسیل عملکرد استفاده شد. در این مدل مقدار عملکرد پتانسیل بر مبنای داده‏های هواشناسی، شرایط خاک، نحوه مدیریت (مانند آبیاری) و پارامترهای گیاهی محاسبه می‏شود. مدل برای اجرا نیاز به یک سری پارامترهای ورودی شامل: روابط آب، اطلاعات هواشناسی، مکانی، خاک و مدیریت زراعی دارد که برای انجام شبیهسازی، ورودی‌های مورد نیاز مدل جمعآوری شدند. مهـم‌تـرین فرآیندهایی که در مدل باید شبیه‌سازی شوند عبارت است از، فنولوژی گیاه، تغییرات سـطح بـرگ، تولیـد و توزیع ماده خشک و موازنه آب خاک. برای پارامتریابی و ارزیابی مدل، مقادیر عملکرد و روز تا رسیدگی شبیه‌سازی شده با مشاهده شده مقایسه شدند. برای این منظور از مجموعه‌ای از دادههای آزمایشی (داده‌های مربوط به رشد و تولید برنج از مقالات و گزارش‌های چاپ شده و چاپ نشده) در مناطق مهم تحت کشت برنج کشور استفاده شد. براساس آمار وزارت کشاورزی 1380-1395، مناطق اصلی کشت و تولید برنج در ایران مشخص شد. در این مطالعه برای مقایسه انحراف مقادیر شبیه‌سازی شده از مشاهده شده از میانگین مربعات خطا (RMSE)، ضریب تغییرات (CV)، ضریب همبستگی (r) و میزان انحراف نتایج شبیه‌سازی شده از خط 1:1 با طیفی از اختلاف 20 درصد بین مقادیر شبیه‌سازی شده و مشاهده شده (به وسیله خطوط منقطع تعریف شده) برای آزمون نتایج مدل استفاده شد.
یافته‌ها: در پارامتریابی مدل SSM-iCrop2برای برنج، مقایسه بین روز تا رسیدگی مشاهده شده و شبیه‌سازی شده ، با RMSE، cv و r به ترتیب برابر با 12 روز، 11 درصد و 61/0 و برای عملکرد دانه به ترتیب 56 گرم در متر مربع، 21 درصد و 80/0 درستی پارامترهای مورد استفاده را نشان داد. همچنین، در ارزیابی مدل، مقادیر RMSE، cv و r برای روز تا رسیدگی به ترتیب برابر با 9 روز، 10 درصد و 95/0، برای عملکرد دانه به ترتیب 43 گرم در متر مربع، 14 درصد و 77/0 و در شبیه‌سازی تبخیر و تعرق به ترتیب 44 میلی‌متر، 9 درصد و 79/0، دقت شبیه‌سازی مدل را تایید نمود. استفاده از مدل SSM-iCrop2 آسان بوده و شبیه‌سازی‌ها با تعداد پارامتر کم و داده‌های ورودی قابل دسترس با دقت قابل قبول امکان پذیر است.
نتیجه‌گیری: نتایج پارامتریابی و ارزیابی مدل SSM-iCrop2 با استفاده از شاخص‌های جذر میانگین مربعات خطا (RMSE)، ضریب همبستگی (r) و ضریب تغییرات (CV)، نشان داد که این مدل مراحل فنولوژیکی (روز تا رسیدگی) و عملکرد دانه را در تاریخ کاشت‌های مختلف در شرایط اقلیمی ایران با دقت زیادی شبیه‌سازی می‌کند که نشان‌دهنده ساختار مناسب مدل در شبیه‌سازی است. بنابراین، با توجه به دقت مناسب مدل SSM-iCrop2در شبیه‌سازی فنولوژی و عملکرد برنج، می‌توان از آن به عنوان ابزار مناسبی برای بررسی سامانه‌های زراعی و تفسیر نتایج در شرایط محیطی و مدیریتی متفاوت در جهت برنامه‌ریزی و بهبود مدیریت مزارع برنج در کشور استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Parameterization and evaluation of SSM-iCrop2 model to simulate the growth and yield of rice in Iran

نویسندگان [English]

  • saleh keramat 1
  • Benjamin Torabi 2
  • afshin soltani 3
  • Ebrahim zeinali 4
1 Ph.D. Graduate, Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Corresponding Author, Associate Prof., Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Professor, Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Associate Prof., Dept. of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Introduction: Rice is one of the most important cereals and staple food of many people in the world. In order to identify the possibility of supplying food to the world's population, given the need for continued production in sustainable agriculture, it is necessary to correctly predict the yield of crops. For this purpose, modeling of growth stages and yield of rice based on meteorological statistics of Iran, was studied in Gorgan University of Agricultural Sciences and Natural Resources. The purpose of this study was to use the simple model SSM-iCrop2 to simulate rice growth and yield to investigate the effects of climatic factors, soil, agronomic management and to determine the genetic coefficients of rice in Iran. Due to the appropriate ability of the model in rice simulation, it can be used as a suitable tool for better planning and management of rice fields in the country.
Materials and Methods: In this study, the SSM-iCrop2 model was used to simulate the potential yield. In this model, the amount of potential yield is calculated based on meteorological data, soil conditions, management and plant parameters. The model needs a series of inputs to run, which is made to perform the simulation of the collected model. The most important processes to be simulated in the model are plant phenology, leaf area changes, dry matter production and distribution, and soil water balance. For parameterization and evaluation of the model, the values of performance and day to maturity of the simulated were compared with those observed. For this purpose, a set of experimental data (data related to rice growth and production from published and unpublished articles and reports) was used in important areas under rice cultivation. According to the statistics of the Ministry of Agriculture, 2001-2016, the main areas of rice cultivation and production in Iran were identified. In this study, to compare the deviation of the simulated values from the observed squared error mean (RMSE), coefficient of variation (CV), correlation coefficient (r) and the deviation of the simulated results from line 1:1 with a range of 20% difference. Between the simulated and observed values was used to test the model results.
Results and discussion: In parameterization of SSM-iCrop2 model for rice, the comparison of observed and simulated days to maturity with RMSE, CV and r values of respectively 12 days, 11 percent and 0.61, respectively, and for grain yield of 56 g m-2, 21 percent and 0.80 indicated the accuracy of the used parameters. Furthermore, in evaluation the model, RMSE, CV and r values for days to maturity were 9 days, 10 percent and 0.95 and for grain yield were 43 g m-2, 14 percent and 0.77 and in simulation evapotranspiration were 44 mm, 9 percent and 0.79 respectively, which confirms the precision of the model simulation. Application of SSM-iCrop2 model is simple and acceptably precise simulation is possible with minimal parameters and inputs.
Conclusion: The results of parameterization and evaluation of SSM-iCrop2 model, which was (RMSE), (r) and (CV), showed that this model includes phenological stages and grain yield in the history of different plantings in the climatic conditions of Iran simulates with great accuracy, which indicates the appropriate structure of the model in the simulation. Therefore, considering the appropriate accuracy of SSM-iCrop2 model in simulating rice phenology and yield, it can be used as a suitable tool to study cropping systems and interpret the results in different environmental and management conditions to plan and improve the management of rice fields in the country.

کلیدواژه‌ها [English]

  • soil water
  • leaf area
  • simulation
  • phenology
  • grain yield
1.Barari Tari, D., Gazanchian, A., Pirdashti, H.A. and Nasiri, M. 2009. Flag leaf morphophysiological response to different agronomic treatments in promising line of rice (Oryza sativa L.), American-Eurasian J. Agric. Env. Sci. 5: 3. 403-408.
3.Chakravarthi, B. and Naravaneni, R. 2006. SSR marker-based DNA fingerprinting and diversity study in rice (Oryza sativa L.). Afr. J. Biotechnol. 5: 684-688.
4.Ministry of Agriculture Statistics. 2016. Agricultural Statistics Bulletin Volume I. Ministry of Agriculture Jihad, Deputy of Planning and Economics, Bureau of Statistics and Information Technology.
5.Tilman, D., Balzer, C., Hill, J. and Befort, B.L. 2011. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA. 108: 50. 20260-20264.
6.Liu, S.L., Pu, C., Ren, Y.X., Zhao, X.L., Zhao, X. and Chen, F. 2016. Yield variation of double-rice in response to climate change in Southern China. Eur. J. Agron. 81: 161-168.
7.Sinclair, T.R. and Seligman, G. 1996. Crop modeling: from infancy to maturity. J. Agron. 88: 5. 698-704.
8.Soltani, A., Hammer, G.L., Torabi, B., Robertson, M.J. and Zeinali, E. 2006. Modeling chickpea growth and development: Phenological development. Field Crop Res. 99: 1-13.
9.Soltani, A. 2009. Mathematical modelling in crops. JDM Press. 175p. (In Persian)
10.Bouman, B.A.M. and van Laar, H.H. 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric. Syst. 87: 249-273.
11.Chen, Y., Wang, P., Zhang, Z., Tao, F. and Wei, X. 2017. Rice yield development and the shrinking yield gaps in China, 1981-2008. Reg. Environ. Change. 17: 2397-2408.
12.Feng, L.P., Bouman, B.A.M., Tuong, T.P., Cabangon, R.J., Li, Y.L., Lu, G.A. and Feng, Y.H. 2007. Exploring options to grow rice using less water in northern China using a modelling approach. I. Field experiments and model evaluation. Agric. Water Manage. 88: 1-13.
13.Timsina, J. and Humphreys, E. 2006. Performance of CERES-rice and CERES-wheat models in rice-wheat systems: a review. Agric. Syst. 90: 5-31.
14.Amiri, E., Razavipour, T. and Bannayan Awal, M. 2011. Evaluation of yield and water productivity in rice under irrigation management and plant density with use ORYZA2000 model. J. Crop Prod. 4: 3. 1-19.
15.Amiri, E., Rezaei, M. and Bannayan Aval, M. 2011. Evaluation of the rice growth model ORYZA2000 under nitrogen and water limited conditions (Calibration and Validation). J. Water Soil. 5: 4. 757-769.
16.Rezaei, M., Amiri, E. and Motamed, M.K. 2011. Effects of irrigation interval and nitrogen fertilizer on yield and water productivity of rice (Hashemi cultivar) in Guilan. J. Agron. 93: 57-67.
17.Bagheri, V. and Torabi, B. 2015. A simple model for simulation of growth, development and yield of faba bean in Golestan province. Hajizadeh, H. 2005. SBEET: A simple model to simulate growth and yield of sugar beet. J. Agric. Sci. Technol. 19: 11-26.
18.Sinclair, T., Farias, J., Neumaier, N. and Nepomuceno, A. 2003. Modeling nitrogen accumulation and use by soybean. Field Crop Res. 81: 149-158.
19.Soltani, A., Maddah, V. and Sinclair, T.R. 2013. SSM-Wheat: a simulation model for wheat development, growth and yield. Int. J. Plant Prod. 7: 711-740.
20.Soltani, A. and Sinclair, T.R. 2015. A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crop Res. J. Crop Prod. 8: 2. 133-152.
21.Dadrasi, A., Torabi, B. and Ghasemi Maham, S. 2018. Modeling growth and yield of safflower in Isfahan. J. Plant Ecophysiol. 10: 32. 161-176.
22.Dadrasi, A., Torabi, B., Rahimi, A., Soltani, A. and Zeinali, E. 2020. Parameterization and evaluation of a simple simulation model (SSM-iCrop2) for potato (Solanum tuberosum L.) growth and yield in Iran. Potato Res. pp. 1-19.‏
23.Torabi, B. and Soltani, A. 2013. A simple model for predicting grain yield of maize single cross 704 hybrid. J. Crop Prod. Proc. 3: 7. 47-59.
24.Amiri Larijani, B., Tahmasebi Sarvetani, Z., Nematzadeh, G., Amiri, E. and Esfahani, M. 2011. Simulation of phonological development and growth duration of three rice cultivars at different seedling ages using ORYZA2000 model. Iranian J. Crop Sci. 13: 3. 466-480.
25.Amiri, E. and Rezaei, R. 2009. Testing the modelling capability of ORYZA2000 under water–nitrogen limit conditions in northern Iran. World Appl. Sci. J. 6: 8. 1113-1122. (In Persian)
26.Soltani, A. and Sinclair, T.R. 2012. Modeling physiology of crop development, growth and yield. CABI Publishing, Wallingford, UK.
27.Soltani, A. and Sinclair, T.R. 2011. A simple model for chickpea development, growth and yield. Field Crops Res. 124: 252-260.
28.Williams, J.R., Jones, C.A., Kiniry, J.R. and Spanel, D.A. 1989. The EPIC crop growth model. Trans ASAE. 32: 497-510.
29.Dastan, S., Noormohamadi, Gh., Madani, H., Ebrahimi, M. and Yasari, E. 2016. Investigation of growth and phenology of main crop and ratoon of rice cultivars in different cropping systems. Plant Prod. Technol. 16: 1. 81-101. (In Persian)
30.Sinclair, T.R. 2006. A reminder of the limitations in using Beer's law to estimate daily radiation interception by vegetation. Crop Sci. 46: 2343-2347.
31.Jamieson, P.D., Semenov, M.A., Brooking, I.R. and Francis, G.S. 1998. Sirius: a mechanistic model of wheat response to environmental variation. Eur. J. Agron. 8: 161-179.
32.Soltani, A. and Hoogenboom, G. 2007. Assessing crop management options with crop simulation models based on generated weather data. Field Crop Res. 103: 198-207.
33.Mahzari, S., Baghestani, M.A., Shirani Rad, A.H., Nasiri, M. and Omrani, M. 2012. Investigation of mechanical and chemical weeds management on rice agronomical traits. J. Agroecol. 2: 2. 100-116. (In Persian)
34.Akbari, R. and Moumeni, A. 2015. Study of optimum transplanting date and nitrogen application in a double-cropping system of rice (Oryza sativa L.) for ‘Kuhsaar’ Cultivar in Mazandaran. J. Crop Prod. 8: 2. 195-207. (In Persian)
35.Esmaeilzadeh, M., Niknejad, Y., Fallah Amoli, H. and Kheyri, N. 2016. Determination of Optimum Transplanting Date for Double Cropping of Rice (Oryza sativa L. CV. Tarom Mahalli) in Mazandaran. J. Crop Ecophysiol. 4: 40. 991-1006. (In Persian)
36.Limochi, K., Siadat, S.A. and Gilani, A. 2013. Effect of planting time on the flag leaf anatomy and grain yield of rice genotypes in Khuzestan province. Iran J. Crop Sci. 15: 2. 136-151. (In Persian)
37.Akbarlou, R. 2013. Effect of potassium and planting method on yield and some agronomical traits of local variety of round-grain rice in Khoy. J. Res. Crop Sci. 5: 19. 1-14. (In Persian)
38.Bakhshipour, S., Gazanchian, A., Mohaddesi, A., Rahimsouroush, H. and Nasiri, M. 2012. Genotypic and phenotypic correlations between grain yield and some agronomic traits in promising rice lines. J. Agron. 97: 82-90.
39.Saadati, Z., Pirmoradian, N., Amiri, E. and Rezaei, M. 2012. Assessment of WOFOST model in simulating yields of two rice varieties under different irrigation regimes. J. Water Res. Agric. 26: 3. 323-338.
40.Amin Deldar, Z. and Ehteshami, M.R. 2012. The effects of different strains of Pseuodomonas on uptake efficiency, yield and yield components of rice. Plant Proc. Func. 1: 2. 73-88.
41.Modaberi, H. 2010. Determination of evapotranspiration and vegetative factor of two common varieties of rice in the dashtemordab (gilan). Master's thesis for irrigation-drainage.School of Agriculture. University of Tarbiat Modares.
42.Pirmoradian, N., Zekri, F., Rezaei, M. and Abdollahi, V. 2013. Derivation of crop coefficients of three rice varieties based on ET estimation method in Rasht region. J. Cereal Res. 3: 2. 95-106. (In Persian)
43.Zare Abianeh, H., Nouri, H., Liaghat, A.M., Nouri, H. and Karimi, V.A. 2011. Comparison of Penman-Monteith FAO Method and a Class Pan Evaporation with Lysimeter Measurements in Estimation of Rice Evapotranspiration in Amol Region. J. Phys. Geogr. Res. Q. 43: 76. 71-83. (In Persian)
44.Poor Yazdankhah, H., Razavipoor, T., Khaledian, M.R. and Rezaie, M. 2014. Determining crop coefficient of Binam and Khazar cultivars of rice by lysimeter and controlled basins in Rasht region. J. Agroecol. 6: 2. 238-249. (In Persian)
45.Rezaei, M., Motamed, M.K., Yousefi, A. and Amiri, E. 2010. Evaluation of Different Irrigation Management on Rice Yield. J. Water Soil. 24: 3. 565-573.
46.Amir, J. and Sinclair, T.R. 1991. A model of water limitation on spring wheat growth and yield. Field Crops Res. 28: 1-2. 59-69.
47.Devkota, K.P., Manschadi, A.M., Devkota, M., Lamers, J.P.A., Ruzibaev, E., Egamberdiev, O., Amiri, E. and Vlek, P.L.G. 2013. Simulating the impact of climate change on rice phenology and grain yield in irrigated drylands of central Asia. J. Appl. Meteor. Climatol. 52: 2033-2050.
48.Grassini, P., van Bussel, L.G.J., Van Wart, J., Wolf, J., Claessens, L., Yanga, H., et al. 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 177: 49-63.
49.Koo, J. and Dimes, J. 2013. HC27 Generic Soil Profile Database. http://hdl.handle.net/1902.1/20299, Harvard Data verse, V4.
50.Yuan, Sh., Peng, Sh. and Tao, Li. 2017. Evaluation and application of the ORYZA rice model under different crop. Managements with high-yielding rice cultivars in central China. Field Crop Res. 212: 115-125.
51.Amiri, E. 2009. Simulation of rice growth and development under irrigation constraint conditions. J. Biol. Sci. 1: 4. 1-13. (In Persian)
52.Streck, N.A., Weiss, A., Xue, Q. and Baenziger, P.S. 2003. Improving predictions of developmental stages in winter wheat: a modified Wang and Engel model. Agric. Meteorol. 115: 139-150.
53.Soltani, A., Alimagham, S., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., et al. 2020. SSM-iCrop2: A simple model for diverse crop species over large areas. Agric. Syst. 182: 102855.