شبیه‌سازی عملکرد و بهره‌وری مصرف آب در ارقام جدید گندم نان با استفاده از مدل DSSAT-Nwheat

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 نویسنده مسئول، دانشیار گروه آبیاری و زهکشی، دانشکده آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران.

4 استادیار گروه آبیاری و زهکشی، دانشکده آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

سابقه و هدف: مدل‌های شبیه‌سازی گیاهان زراعی بـه‌طور گسترده‌ای در تجزیه و تحلیل نظام‌های کشت، تغییرات اقلیمی و روش‌های مدیریت محصول مورد استفاده قرار می‌گیرند و ابزار مناسبی برای تکمیل و توسعه نتایج آزمایش‌های مزرعه‌ای بـرای ارزیابی ارقام جدید و نظام‌های مدیریتی جدید است. هدف از این پژوهش شبیه‌سازی مراحل فنولوژی و عملکرد ارقام مختلف گندم نان در شرایط اقلیمی شهرستان گرگان با استفاده از مدل DSSAT-Nwheat بود.
مواد و روش‌ها: در این پژوهش به منظور ارزیابی کارکرد مدل DSSAT-Nwheat، از داده‌های یک آزمایش دو ساله (سال‌های زراعی 1399-1398 و 1400-1399) استفاده شد که چهار رقم جدید گندم نان در هفت تاریخ کاشت‌ به صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی بررسی شده بودند. در این آزمایش هفت تاریخ کاشت (از 10 آبان تا 10 دی ماه به فواصل 10روزه) در کرت‌های اصلی و چهار ژنوتیپ گندم نان (آرمان، آراز، تکتاز و N-93-9) در کرت‌های فرعی قرار گرفته‌ بودند. از داده‌های سال اول و سال دوم آزمایش به ترتیب جهت واسنجی و صحت‌سنجی مدل استفاده شد. علاوه بر داده‌های مزرعه، داده‌های هواشناسی روزانه، رویدادهای مدیریتی، خصوصیات خاک و مختصات جغرافیایی در اختیار نرم‌افزار DSSAT 4.7 قرار گرفت. پس از تعیین ضرایب ژنتیکی هـر رقـم، واسنجی مدل برای صفات مختلف انجام شد و از همان ضرایب برای صحت‌سنجی مدل استفاده شد. با استفاده از شاخص‌های آماری مقادیر شبیه‌سازی شده مدل با مقادیر مشاهده شده مورد آزمون قرار گرفت.
یافته‌ها: نتایج نشان داد که مراحل فنولوژی شامل صفات روز تا گلدهی و روز تا رسیدگی با مقادیر جذر میانگین مربعات خطا (RMSE) چهار روز، جذر میانگین مربعات خطای نرمال شده (nRMSE) کمتر از سه درصد شبیه‌سازی شده است. مقادیر RMSE برای عملکرد دانه و عملکرد زیستی به ترتیب 416 و 1000 کیلوگرم در هکتار بود و مقادیر nRMSE نیز بین 8-7 درصد بود. در بهره‌وری آب مبتنی بر عملکرد دانه و عملکرد زیستی مقادیر nRMSE به ترتیب 21/6 و 53/7 درصد و و مقادیر RMSE نیز در به ترتیب 93/0 و 91/2 کیلوگرم در هکتار بر میلی‌متر بود. در تمامی صفات شبیه‌سازی شده آماره‌های شاخص توافق ویلموت (d) و ضریب تبیین (R2) در محدوده قابل قبولی قرار داشتند که نشان از کارایی خوب مدل DSSAT-Nwheat، درشبیه‌سازی این صفات در ارقام مختلف گندم نان داشت.
نتیجه‌گیری: نتایج این پژوهش نشان داد که مدل DSSAT-Nwheat با کارایی مناسبی قادر به شبیه‌سازی مراحل فنولوژی، عملکرد دانه، عملکرد زیستی و کارایی مصرف آب در چهار رقم آراز، آرمان، تکتاز و N-93-9 بود. به طوری که مقادیر nRMSE برای تمامی صفات مورد مطالعه بین 6-8 درصد بود. ارقام مورد مطالعه در این پژوهش، جدیدترین ارقام معرفی شده برای اقلیم گرم و مرطوب شمال کشور بودند و در چند سال آینده سطح قابل توجهی از کشت گندم را در استان گلستان به خود اختصاص خواهند داد.. بنابراین به نظر می‌رسد نتایج این پژوهش می‌تواند در تصمیم‌گیری‌ها نظام‌های کشت گنـدم، تأثیرات مختلف مدیریت زراعی و تغییر شرایط اقلیمی جاری و آینده استان گلستان مورد بهره‌برداری قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Yield and Water Productivity in New Bread Wheat Cultivars Using DSSAT-Nwheat Model

نویسندگان [English]

  • Farasat Sajadi 1
  • Hossein Sharifan 2
  • soughi Habiballah 3
  • Mohammad Abdolhosseini 4
1 P. Ph.D. Student, Dept. of Irrigation and Drainage, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Corresponding Author, Associate Prof., Dept. of Irrigation and Drainage, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Associate Prof., Horticulture Crops Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran.
4 Assistant Prof., Dept. of Irrigation and Drainage, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Background and objectives: Crop simulation models are widely used in the analysis of cropping systems, climate change and crop management methods. It is a good tool for completing and developing the results of field trials to evaluate new cultivars and new management systems. The aim of this research was to simulate the phenological stages and yield of different bread wheat cultivars in climatic conditions of Gorgan city using DSSAT-Nwheat model.
Materials and methods: In this study, in order to evaluate the performance of the DSSAT-Nwheat model, the data drived from a two-year experiment (Growing seasons 2019-2020 and 2021-2020), in which four new bread wheat cultivars were studied under seven sowing dates as split plot based on randomized complete block design (RCBD). Seven sowing dates (from 1 November to 31 December, 10-day intervals) were placed in main plots and four bread wheat genotypes (including Arman, Araz, Taktaz and N-93-9) were placed as subplots. The data derived from the first year and the second year were used for calibration and validation of the model, respectively. In addition to field data, daily meteorological data, management events, soil characteristics and geographical coordinates were provided to DSSAT 4.7 software. After determining the genetic coefficients of each genotype, the model was calibrated for different traits and subsequently the same coefficients were used to validate the model. Using statistical indices, the simulated values of the model were tested with the observed values.
Results: The results showed that the phenological stages including day to anthesis and day to maturity were simulated with root mean squared error (RMSE) equal to four days, and normalized root mean square error (nRMSE) less than 3%. RMSE for grain yield and biological yield were 416 kg ha-1 and 1000 kg ha-1, respectively, and nRMSE values were between 7-8%. In water productivity based on grain yield and biological yield, nRMSE values were 6.21% and 7.53%, respectively, and RMSE values were 0.93 kg ha-1 mm-1 and 2.91 kg ha-1 mm-1, respectively. In all the simulated traits, the Willmott's agreement indices (d) and the coefficient of determination (R2) were in the acceptable range, which showed the proper performance of the DSSAT-Nwheat model for simulating these traits in different bread wheat cultivars.
Conclusion: The results of this study showed that the DSSAT-Nwheat model had proper performance for simulating phenological stages, grain yield, biological yield and water productivity in four cultivars including Araz, Arman, Taktaz and N-93-9. The nRMSE values for all studied traits were between 6-8%. The cultivars studied in this study are the latest cultivars released for the northern warm and humid agro-climatic zone, Iran, in the next few years, they will occupy a large area of wheat cultivation in Golestan province. Therefore, it seems that the results of this study can be used in the decisions of wheat cultivation systems, different effects of agricultural management and current and future climate change in Golestan province.

کلیدواژه‌ها [English]

  • Golestan province
  • Sowing date
  • Climate change
  • Modeling
1.Food and Agriculture Organization (FAO) 2019: Available http:// www.fao.org/faostat/en/#home. Last accessed 2 May 2022.
2.Ghaffari, A. and Jalal Kamali, M. 2013. Wheat Productivity in Islamic Republic of Iran: Constraints and opportunities.
p 98-11. In R. Paroda., S. Dasgupta., B. Mal., S.S Singh., M. L. Jat. and G. Singh (eds.) Proceedings of the Regional Consultation on Improving Wheat Productivity in Asia, Bangkok, Thailand.
3.Ahmadi, K., Abadzadeh, H., Hatami, F., Mohammadnia Afrozi, S., Esfandyaripour, A. and Abas Taghani, R. 2022. Agricultural Statistics in Crop Season 2019-2020. Publications Ministry of Jihad-e-Agriculture. Tehran, Iran. 89p.
(In Persian)
4.Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B., Ottman, M.J., Wall, G. and White, J.W. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5: 143.
5.IPCC. 2018. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development,
and Efforts to Eradicate Poverty, Intergovernmental Panel on Climate Change. 616p.
6.Semenov, M.A. and Stratonovitch, P. 2013. Designing high‐yielding wheat ideotypes for a changing climate. Food Energy Secur. 2: 185-196.
7.Farooq, M., Bramley, H., Palta, J.A. and Siddique, K.H. 2011. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant. Sci. 30: 491-507.
8.Farooq, M., Hussain, M. and Siddique, K. H. 2014. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant. Sci. 33: 331-349.
9.Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M. and Andarzian, B. 2015. Determining optimum sowing date of wheat using CSM-CERES-Wheat model. J. Saudi. So. Agric. Sci. 14: 189-199.
10.Kalateh-Arabi, M., Sheikh, F., Soqi, H. and Hivehchie, J. 2011. Effects of sowing date on grain yield and its components of two bread wheat (Triticum aestivum L.) cultivars in Gorgan in Iran. Seed Plant Prod. J. 27: 285-296. (In Persian)
11.Soughi, H., Khodarahmi, M., Jafarby, J. and Nazari M. 2021. Yield Analysis of New Bread Wheat Cultivars Based on Agro-Climatic Indices under Different Sowing Dates in Gonbad. J. Plant Prod. 28: 1. 185-211. (In Persian)
12.Jones. 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
13. Basso, B., Liu, L. and Ritchie, J.T. 2016. A comprehensive review of the CERES-wheat,-maize and-rice models’ performances. Advan in agronomy. 136: 27-132.
14.Oteng-Darko, P., Yeboah, S., Addy, S., Amponsah, S. and Danquah, E.O. 2013. Crop modeling: A tool for agricultural research–A review. E3 J. Agric. Res. Dev. 2: 1. 1-6.
15.Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan, A. and Tonnang, H. 2018. Role of modelling in international crop research: overview and some case studies. Agronomy. 8: 12. 291.
16.Kassie, B.T., Asseng, S., Porter, C.H. and Royce, F.S. 2016. Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. Eur. J. Agron. 81: 27-36.
17.Hoogenboom, G., Porter, C., Shelia, V., Boote, K., Singh, U., White, J., Hunt, L., Ogoshi, R., Lizaso, J. and Koo, J. 2017. Decision support system for agrotechnology transfer (DSSAT) version 4.7 (https://DSSAT. net). DSSAT Foundation, Gainesville, Florida. USA.
18.Jones. 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
19.Rauff, K.O. and Bello, R. 2015. A review of crop growth simulation models as tools for agricultural meteorology. Agric. Sci. 6: 1098.
20.White, J.W., Hoogenboom, G., Kimball, B.A. and Wall, G.W. 2011. Methodologies for simulating impacts of climate change on crop production. Field Crop Res. 124: 357-368.
21.Hussain, J., Khaliq, T., Ahmad, A. and Akhtar, J. 2018. Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PloS one 13, e0197546.
22.Zheng, Z., Cai, H., Yu, L. and Hoogenboom, G. 2017. Application of the CSM–CERES–Wheat Model for yield prediction and planting date evaluation at Guanzhong Plain in Northwest China. Agron. J. 109: 1. 204-217.
23.Mehrabi, F. and Sepaskhah, A.R. 2020. Winter wheat yield and DSSAT model evaluation in a diverse semi-arid climate and agronomic practices. Inter. J. Plant Prod. 14: 2. 221-243.
24.Fallah, M.H., Nezami, A., Khazaie, H.R. and Mahallati, M.N. 2021. Evaluation of DSSAT-Nwheat Model across a Wide Range of Climate Conditions in Iran. J. Agroecol. 12: 4. 561-580. (In Persian)
25.Saadati, Z., Delbari, M., Amiri, E., Panahi, M., Rahimian, M.H. and Ghodsi, M. 2016. Assessment of CERES-Wheat model in simulation of varieties of wheat yield under different irrigation treatments. J. Water Soil Res. Conserv. (WSRCJ). 5: 3. 73-85. (In Persian)
26.Mahru, A.H., Soltani, A., Galeshi, S. and Kalate-Arabi, M. 2010. Estimates of genetic coefficients and evaluation of model DSSAT for Golestan province. Elec. J. Crop Prod. 3: 2. 229-253. (In Persian)
27.Soltani, A. 2008. Mathematical Modeling in Field Crops. Ferdowsi University Press. Mashhad, Iran. 175p. (In Persian)
28.Yang, J., Yang, J.Y., Liu, S. and Hoogenboom, G. 2014. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 127: 81-89.
29.Elsheikh, A.H., Sharshir, S.W., Abd Elaziz, M., Kabeel, A., Guilan, W. and Haiou, Z. 2019. Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy. 180: 622-639.
30.Röll, G., Memic, E. and Graeff‐Hönninger, S. 2020. Implementation of an automatic time‐series calibration method for the DSSAT wheat models to enhance multi‐model approaches. Agron. J. 112: 3891-3912.
31.Ritchie, J.T., Singh. U., Godwin, D.C. and Bowen, W.T. 1998. Cereal growth.development and yield. In: Tsuji, G.Y., Hoogenboom, G. Thornton. P.K. (Eds.). Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordretcht, pp. 79-98.
32.Jamieson, P., Porter, J. and Wilson, D. 1991. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crop Res. 27: 337-340.
33.Soltani, A., Hammer, G.L., Torabi, B., Robertson, M.J. and Zeinali, E. 2006. Modeling chickpea growth and development: phonological development. Field Crop Res. 99: 1-13.
34.Khalil Aghdam, A. 2019. Prediction of Phenology, Phyllochron and Leaf Area in Wheat (cv. Sardari). J. Plant Prod.
26: 2. 85-99. (In Persian)
35.Kiani, A., Koocheki, A.R., Nassiri Mahallati, M. and Banayan, M. 2004. CERES-Wheat model evaluation at two different climatic in Khorasan province, П Phenology and growth parameter simulation. J. Desert. 9: 125-142. (In Persian)
36.Sar, K. and Mahdi, S.S. 2019. Evaluation and Performance of CERES-Wheat DSSAT v4. 6 Model for Growth, Development and Yield in Southern Bihar. Indian J. Ecol. 46: 217-219.
37.Bannayan, M., Crout, N.M.J. and Hoogenboom, G. 2003. Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agron J. 95: 114-125.
38.Delghandi, M., Andarzian, B., Broomandnasab, S., Massah Bovani, A. and Javaheri, E. 2014. Valuation of DSSAT 4.5-CSM-CERES-Wheat to Simulate Growth and Development, Yield and Phenology Stages of Wheat under Water Deficit Condition (Case Study: Ahvaz Region). J. Water Soil. 28: 1. 82-91. (In Persian)
39.Jing, Q., McConkey, B., Qian, B., Smith, W., Grant, B., Shang, J. and Luce, M.S. 2021. Assessing water management effects on spring wheat yield in the Canadian Prairies using DSSAT wheat models. Agric. Water Manage. 244: 106591.