1.Asgarian, Z.S., Karimi, R., Ghabooli, M. and Maleki, M. 2021. Biochemical changes and quality characterization of cold-stored ‘Sahebi’ grape in response to postharvest application of GABA. Food Chem. 131401.
2.Buchanan, B.B., Gruissem, W. and Jones, R.L. 2015. Biochemistry and molecular biology of plants, Second edition. John Wiley & Sons, UK. 1264p.
3.Sheng, L., Shen, D., Luo, Y., Sun, X., Wang, J., Luo, T., Zeng, Y., Xu, J., Deng, X. and Cheng, Y. 2017. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chem. 216: 138-145.
4.Karimi, R., Mirzaei, F. and Rasouli, M. 2017. Phenolic acids, flavonoids, antioxidant capacity and minerals content in fruit of five grapevine cultivars. Iran. J. Hort. Sci. Tech. 18: 1. 89-102.
5.Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Zarei, A., Deyman, K.L. and Brikis, C.J. 2012. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci. pp. 193-194.
6.Aghdam, M.S., Razavi, F. and Karamneghad, F. 2015. Maintaining the postharvest nutritional quality of peach fruits by γ-Aminobutyric acid. Iran. J. Plant Physiol. 5: 4. 1457-1463. (In Persian)
7.Malabarba, J., Reichelt, M., Pasqualil, G. and Mithöfer, A. 2018. Tendril coiling in Grapevine: Jasmonates and a new role for GABA. J. Plant Growth Regul. 37p.
8.Ramos-Ruiz, R., Poirot, E. and Flores-Mosquera, M. 2018. GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food Agric. 4: 1534323.
9.Li, W., Liu, J., Ashraf, U., Li, G., Li, Y. and Lu, W. 2016. Exogenous γ-aminobutyric acid (GABA) application improved early growth, net photosynthesis, and associated physiobiochemical events in maize. Frot. Plant Sci. 7: 919.
10.Beuve, N., Rispail, N., Laine, P., Clquent, J.B., Ourry, A. and Le Deunff, E. 2004. Putative role of γ-aminobutyric acid (GABA) as a long distance signal in upregulation of nitrate uptake in Brassica napus L. Plant Cell Environ. 27: 1035-1046.
11.Masclaux-Daubresse, C., Valadier, M.H., Carrayol, E., Reisdorf-Cren, M. and Hirel, B. 2002. Diurnal changes
in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environment, 25: 1451-1462.
12.Vijayakumari, K. and Puthur, J.T. 2016. γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in piper nigrum Linn. plants subjected to peg-induced stress. Plant Growth Regul. 78: 57-67.
13.Yonghong, G., Bin, D., Canying, L., Tang, Q., Xue, L., Meilin, W., Chen, Y. and Jianrong, L. 2018. Ƴ -Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway. Sci. Hort. 240: 303-309.
14.Rastegar, S., Hassanzadeh, H. and Rahimzadeh, M. 2019. Effect of γ-aminobutyric acid on the antioxidant system and biochemical changes of mango fruit during storage. J. Food Meas. Charact. 14: 778-789. (In Persian)
15.Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S. and Du, R. 2014. Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Sci. Hort. 168: 132-137.
16.Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X. and Yu, T. 2014. γ-aminobutyric acid induces resistance against penicillium expansum by priming of defence responses in pear fruit. Food Chem. 159: 29-37.
17.Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A. and Goldschmidt, E.E. 2003. Induction of resistance to Penicillium digitatum in grapefruit by b-aminobutyric acid. Eur. J. Plant Pathol. 109: 901-907.
18.Zhang, C.F., Wang, J.M., Zhang, J.G., Hou, C.J. and Wang, G.L. 2011. Effects of b-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biol. Technol. 61: 145-151.
19.Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A. and Neier, R. 2017. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist, 213: 552-559.
20.Ayala-Zavala, J.F., Wang, S.Y. and Gonzalez-Aguilar, G.A. 2007. High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technol. Biotech. 45: 166-173.
21.Chiou, A., Karathanos, V.T., Mylona, A., Salta, F.N., Preventi, F. and Andrikopoulos, N.K. 2007. Grape (Vitis vinifera L.) Content of simple phenolics and antioxidant activity. Food Chem. 102: 516-522.
22.Ebrahimzadeh, M.A., Hosseinimehr, S.J., Hamidinia, A. and Jafari, M. 2008. Antioxidant and free radical scavenging activity of Feijoa Sallowiana fruits peel and leaves. J. Pharmacol-online, 1: 7-14. (In Persian)
23. Chang, C., Yang, M., Wen, H. and Chern, J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178-182.
24.Chung, Y.C., Chen, S.J., Hsu, C.K., Chang, C.T. and Chou, S.T. 2005. Studies on the antioxidative activity of graptopetalum paraguayense E. Walther. Food Chem. 91: 419-424.
25.Karthikeyan, M., Radhika, K., Mathiyazhagan, S., Bhaskaran, R., Samiyappan, R. and Velazhahan, R. 2006. Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Brazilian J. Plant Physiol. 18: 367-377.
26.Aebi, H. 1984. Catalase in vitro. Meth. Enzymol. 105: 121-126.
27.Rabiei, V. and Jozqasemi, S. 2013. Applied laboratory practices in horticultural sciences. Urmia Univ. Press, 264p. (In Persian)
28.Shang, H., Shifeng, C., Zhenfeng, Y., Yuting, C. and Yonghua, Z. 2011. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J. Agric. Food Chem. 59: 1264-1268.
29.Wang, L., Zhang, H., Jin, P., Guo, X., Li, Y., Fan, C., Wang, J. and Zheng, Y. 2016. Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biol. Technol. 118: 71-78.
30.Yang, A.S., Cao, Z., Yang, Y.C. and Zheng, Y. 2011. γ-Aminobutyric acid treatment reduces chilling injury and activates the defense response of peach fruit. Food Chem. 129: 1619-1622.
31.Ramesh, S.A., Tyerman, S.D., Xu, B., Bose, J., Kaur, S., Conn, V., Domingos, P., Ullah, Ramesh, S.A., Tyerman, S.D., Gilliham, M. and Bo, X. 2016. γ-aminobutyric acid (GABA) signalling in plants. Cell. Mol. Life Sci. 74: 1557-1603.
32.Wang, J., Cao, C.H., Wang, L., Wang, X., Jin, P. and Zheng, Y. 2018. Effect of β-Aminobutyric acid on disease resistance against rhizopus rot in harvested peaches. Front. Microbiol. 9: 1505.
34.Wei, X., Ju, Y., Ma, T., Zhang, J., Fang, Y. and Sun, X. 2020. New perspectives on the biosynthesis, transportation, astringency perception and detection methods of grape proanthocyanidins. Food Sci. Nutr. 61: 14. 2372-2398.
35.Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2: 1231-1246.
36.Devies, P.J. and Sun, T.P. 2004. Plant hormones: gibberellin signal transduction in stem elongation and leaf growth. Kluer Academic. London.
37.Ma, Y., Wang, P., Wang, M., Sun, M., Gu, Z. and Yang, R. 2019. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chem. 270: 593-601.
38.Hattori, T., Chen, Y., Enoki, Sh., Igarashi, D. and Suzuki, Sh. 2019. Exogenous isoleucine and phenylalanine interact with abscisic acid-mediated anthocyanin accumulation in grape. Folia Hort. 31: 1. 147-157.
39.Soubeyrand, E., Basteau, C., Hilbert, G., Van Leeuwen, C., Delrot, S. and Gomès, E. 2014. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet Sauvignon berries. Phytochem.
103: 38-49.
40.Kong, J.Q. 2015. Phenylalanine ammonia-lyase a key component used for phenylpropanoids production by metabolic engineering. Royal Society of Chemistry, 5: 62587-62603.
41.Ge, Y.H., Deng, H.W., Bi, Y., Li, C.Y., Liu, Y.Y. and Dong, B.Y. 2015. Postharvest ASM dipping and DPI pre-treatment regulated reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 99: 160-167.
42.Zimmerli, L., Metraux, J.P. and Mauch-Mani, B. 2001. β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fimgus Botrytis cinerea. Plant Physiol. 126: 517-523.
43.Portu, J., González-Arenzana, L., Hermosín-Gutiérrez, I., Santamaría, P. and Garde-Cerdán, T. 2015. Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content. Food Chem. 180: 55-63.
44.Cheng, X., Wang, X., Zhang, A., Wang, P., Chen, Q., Ma, T., Li, W., Liang, Y., Sun, X. and Fang, U. 2020. Foliar phenylalanine application promoted antioxidant activities in cabernet sauvignon by regulating phenolic biosynthesis. J. Agric. Food Chem. 10: 1021.
45.Li, L. and Sun, B. 2019. Grape and wine polymeric polyphenols: Their importance in enology. Crit. Rev. Food Sci. Nutr. 59: 563-579.
46.Shi, P., Song, C., Chen, H., Duan, B., Zhang, Zh. and Meng, J. 2018. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot Grown in the iron deficiency soil. Food Chem. 253: 164-170.
47.Bimpilas, A., Panagopoulou, M., Tsimogiannis, D. and Oreopoulou, V. 2016. Anthocyanin copigmentation and color of wine: the effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chem. 197: 39-46.
48.Hasan, M. and Bae, H. 2017. An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 22: 294.
49.Villegas, D., Handford, M., Alcalde, J.A. and Perez-Donoso, A. 2016. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression. Plant Physiol. Biochem. 104: 125-133.
50.Xie, T., Ji, J., Chen, W., Yue, J., Du, C., Sun, J. and Shi, S. 2019. γ-Aminobutyric acid is closely associated with accumulation of flavonoids. Plant Signal. Behav. 14: 7. 1604015.
51.Lingua, M.S., Fabani, M.P., Wunderlin, D.A. and Baroni, M.V. 2016. From grape to wine: changes in phenolic composition and its influence on antioxidant activity. Food Chem. 208: 228-238.