اثر کاربرد برگی گاما‌آمینو بوتیریک‌ اسید بر برخی خصوصیات بیوشیمیایی و بیان ژن‌های PAL وCHS در انگور رقم قزل‌اوزوم (Vitis vinifera L)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 نویسنده مسئول، دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

4 استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

5 دانشیار پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

سابقه و هدف:انگور یکی از مهمترین محصولات میوه‌ای در سطح جهان است و دارای ارزش غذایی بالا با فعالیت آنتی‌اکسیدانی و ضد سرطانی قوی است. امروزه استفاده از ترکیبات سالم طبیعی از جمله ترکیبات نیتروژن آلی برای بهبود کیفی میوه اهمیت زیادی پیدا کرده است. کاربرد اسیدهای آمینه به‌عنوان یکی از ترکیبات طبیعی نیتروژنه می‌تواند باعث افزایش کیفیت تغذیه‌ای میوه‌ها شود. در مطالعه حاضر ازگاما آمینوبوتیریک اسید به‌عنوان یک اسیدآمینه غیر‌پروتئینی جهت بهبود خصوصیات کیفی میوه انگور رقم قزل‌اوزوم استفاده شد.

مواد و روش ها: آزمایش در دو باغ جداگانه واقع در دو منطقه ارومیه با شرایط آب و هوایی (میکروکلیما) متفاوت و در قالب طرح کاملا تصادفی با محلول‌پاشی گابا در 4 غلظت (0، 5، 10 و 25 میلی‌مولار) در دو مرحله زمانی (مرحله veraison و یک هفته بعد) با 3 تکرار بر روی تاک-های انگور رقم قزل ‌اوزوم 13ساله انجام گرفت. برخی خصوصیات کیفی میوه از جمله میزان اسیدهای قابل تیتر (TA)، مواد جامد محلول کل (TSS) ، محتوای آنتی‌اکسیدان کل، فنول کل، فلاونوئید کل، آنتوسیانین کل، فعالیت آنزیم‌های فنیل آلانین آمونیالیاز (PAL) ، کاتالاز، میزان ترکیبات فنولی میوه از جمله فلاونول‌ها، فلاوان-3-اُل‌ها و اسیدهای فنولیکی و همچنین بیان نسبی ژن‌های PAL و CHS ارزیابی شدند.
یافته ها: بر اساس نتایج، گابا در غلظت 10 میلی‌مولار باعث ایجاد بیشترین میزان اسیدهای قابل تیتر، مواد جامد محلول کل، فنول کل، فلاونوئید کل، محتوای آنتی‌اکسیدان کل و آنتوسیانین میوه شد. بیشترین میزان فعالیت آنزیم PAL نیز در همین غلظت گابا مشاهده گردید. آنزیم کاتالاز در غلظت 25 میلی‌مولار گابا بیشترین فعالیت را داشت. ترکیبات فنولی یافت شده بر اساس روش HPLC در این تحقیق ترکیبات فلاونولی میریستین، کوئرستین، کامفرول، سیرینجتین، ترکیبات فلاوان-3-اُل‌ها، کاتچین و ترکیبات غیر فلاونوئیدی گالیک ‌اسید، کافئیک ‌اسید، پی-کوماریک ‌اسید و رسوراترول اندازه‌گیری شدند که اغلب این ترکیبات در غلظت 10 میلی‌مولار گابا بیشترین مقدار را نشان دادند و بعد از آن غلظت 5 میلی‌مولار گابا بیشترین تأثیر را در افزایش این ترکیبات داشت. ژن‌های PAL و CHS نیز در دو زمان نمونه‌برداری بعد از محلول‌پاشی(48 و 72 ساعت) در غلظت 10 میلی‌مولار گابا بیشترین بیان ژنی را داشتند و کمترین بیان آنها در غلظت 25 میلی‌مولار گابا بود.
نتیجه گیری: این پژوهش نشان داد که گابا در غلظت 10 میلی‌مولار و در مرحله veraison و یک هفته بعد از آن با تأثیر‌گذاری بر افزایش میزان شاخص-های کیفی میوه از جمله مواد جامد به‌عنوان سوبسترای اساسی مسیر بیوسنتزی ترکیبات مؤثر کیفیت میوه و محتوای آنتی‌‌اکسیدانی و همچنین با تأثیر بر افزایش بیان ژن‌های دخیل در فعالیت آنزیم PAL به‌‌عنوان یک آنزیم کلیدی در مسیر بیوسنتز ترکیبات فنولی، می‌تواند باعث بهبود کیفیت میوه و بازارپسندی بیشتر میوه انگور رقم قزل‌اوزوم گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of gamma aminobutyric acid (GABA) foliar application on some biochemical characteristics and expression pattern of PAL and CHS genes in Qızıl Uzum grape (Vitis vinifera L.)

نویسندگان [English]

  • Afsaneh Allahveran Oosalo 1
  • Lotfali Naseri 2
  • Abolfazl Alirezalu 3
  • Reza Darvishzadeh 4
  • Samad Nejad Ebrahimi 5
1 Ph.D. Student, Dept. of Horticulture Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Corresponding Author, Associate Prof., Dept. of Horticulture Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
3 Associate Prof., Dept. of Horticulture Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
4 Professor, Dept. of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
5 Associate Prof., Dept. of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

Background and Objectives: Grape is one of the most important fruit products globally and has a high nutritional value with strong antioxidant and anti-cancer activity. Today, the use of healthy natural compounds, including organic nitrogen compounds, has become very important to improve the qualitative performance of fruits. The use of amino acids as one of the natural compounds of nitrogen can increase the nutritional values of fruit crops. In the present study, gamma aminobutyric acid was used as a non-protein amino acid to improve the quality characteristics of Qizil-Uzum grape fruit.
Materials and Methods: The experiment was performed in two separate orchards located in two regions of Urmia city with different microclimatic conditions in a completely randomized design with GABA foliar application at 4 concentrations (0, 5, 10, 25 mM) in two stages (veraison stage and one week later) with 3 replications on 13-year-old cv. Qızıl Uzum grapevines. Some fruit quality characteristics include titratable acids (TA), total soluble solids (TSS), total antioxidant content, total phenol, total flavonoid, total anthocyanin, the activity of phenylalanine ammonialyase (PAL), catalase enzymes, phenolic compounds of fruit including flavonols, flavan-3-ols and phenolic acids, and also a relative expression of PAL and CHS genes were evaluated.
Results: Based on the results, GABA at a concentration of 10 mM, caused the highest content of titratable acids, total soluble solids, total phenol, total flavonoids, total antioxidant and total anthocyanin of fruit. The highest activity of PAL enzyme was also observed at this concentration. Catalase enzyme had the maximum activity at 25 mM. The phenolic compounds that were measured by HPLC in this study included the flavonol compounds: myricetin, quercetin, kaempferol, syringetin; the flavan-3-ols compounds: catechin; and the non-flavonoid compounds: gallic acid, caffeic acid, p-coumaric acid and resveratrol, most of which had the highest level at 10 mM, followed by 5 mM GABA. Also, PAL and CHS genes had the highest expression at both sampling times (48 and 72 hours after foliar application) at the concentration of 10 mM GABA and their lowest expression was at the concentration of 25 mM GABA.
Conclusion: This study showed that GABA at the concentration of 10 mM at the veraison stage and one week later had an effect on increasing fruit quality indicators, including total soluble sugars, as a basic substrate for the biosynthetic pathway of effective fruit quality compounds, and with effect on antioxidant content improvement, as well as enhancing the expression of related genes for PAL enzyme activity, as a key enzyme of the biosynthesis of the phenolic compound, can improve fruit quality and marketability of grape fruit of Qızıl Uzum cultivar.

کلیدواژه‌ها [English]

  • flavan-3-ols
  • flavonol
  • HPLC
  • phenolic compounds
  • phenylalanine ammonialyase
1.Asgarian, Z.S., Karimi, R., Ghabooli, M. and Maleki, M. 2021. Biochemical changes and quality characterization of cold-stored ‘Sahebi’ grape in response to postharvest application of GABA. Food Chem. 131401.
2.Buchanan, B.B., Gruissem, W. and Jones, R.L. 2015. Biochemistry and molecular biology of plants, Second edition. John Wiley & Sons, UK. 1264p.
3.Sheng, L., Shen, D., Luo, Y., Sun, X., Wang, J., Luo, T., Zeng, Y., Xu, J., Deng, X. and Cheng, Y. 2017. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chem. 216: 138-145.
4.Karimi, R., Mirzaei, F. and Rasouli, M. 2017. Phenolic acids, flavonoids, antioxidant capacity and minerals content in fruit of five grapevine cultivars. Iran. J. Hort. Sci. Tech. 18: 1. 89-102.
5.Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Zarei, A., Deyman, K.L. and Brikis, C.J. 2012. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci. pp. 193-194.
6.Aghdam, M.S., Razavi, F. and Karamneghad, F. 2015. Maintaining the postharvest nutritional quality of peach fruits by γ-Aminobutyric acid. Iran. J. Plant Physiol. 5: 4. 1457-1463. (In Persian)
7.Malabarba, J., Reichelt, M., Pasqualil, G. and Mithöfer, A. 2018. Tendril coiling in Grapevine: Jasmonates and a new role for GABA. J. Plant Growth Regul. 37p.
8.Ramos-Ruiz, R., Poirot, E. and Flores-Mosquera, M. 2018. GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food Agric. 4: 1534323.
9.Li, W., Liu, J., Ashraf, U., Li, G., Li, Y. and Lu, W. 2016. Exogenous γ-aminobutyric acid (GABA) application improved early growth, net photosynthesis, and associated physiobiochemical events in maize. Frot. Plant Sci. 7: 919.
10.Beuve, N., Rispail, N., Laine, P., Clquent, J.B., Ourry, A. and Le Deunff, E. 2004. Putative role of γ-aminobutyric acid (GABA) as a long distance signal in upregulation of nitrate uptake in Brassica napus L. Plant Cell Environ. 27: 1035-1046.
11.Masclaux-Daubresse, C., Valadier, M.H., Carrayol, E., Reisdorf-Cren, M. and Hirel, B. 2002. Diurnal changes
in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environment, 25: 1451-1462.
12.Vijayakumari, K. and Puthur, J.T. 2016. γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in piper nigrum Linn. plants subjected to peg-induced stress. Plant Growth Regul. 78: 57-67.
13.Yonghong, G., Bin, D., Canying, L., Tang, Q., Xue, L., Meilin, W., Chen, Y. and Jianrong, L. 2018. Ƴ -Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway. Sci. Hort. 240: 303-309.
14.Rastegar, S., Hassanzadeh, H. and Rahimzadeh, M. 2019. Effect of γ-aminobutyric acid on the antioxidant system and biochemical changes of mango fruit during storage. J. Food Meas. Charact. 14: 778-789. (In Persian)
15.Wang, Y., Luo, Z., Huang, X., Yang, K., Gao, S. and Du, R. 2014. Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Sci. Hort. 168: 132-137.
16.Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X. and Yu, T. 2014. γ-aminobutyric acid induces resistance against penicillium expansum by priming of defence responses in pear fruit. Food Chem. 159: 29-37.
17.Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A. and Goldschmidt, E.E. 2003. Induction of resistance to Penicillium digitatum in grapefruit by b-aminobutyric acid. Eur. J. Plant Pathol. 109: 901-907.
18.Zhang, C.F., Wang, J.M., Zhang, J.G., Hou, C.J. and Wang, G.L. 2011. Effects of b-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biol. Technol. 61: 145-151.
19.Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A. and Neier, R. 2017. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist, 213: 552-559.
20.Ayala-Zavala, J.F., Wang, S.Y. and Gonzalez-Aguilar, G.A. 2007. High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technol. Biotech. 45: 166-173.
21.Chiou, A., Karathanos, V.T., Mylona, A., Salta, F.N., Preventi, F. and Andrikopoulos, N.K. 2007. Grape (Vitis vinifera L.) Content of simple phenolics and antioxidant activity. Food Chem. 102: 516-522.
22.Ebrahimzadeh, M.A., Hosseinimehr, S.J., Hamidinia, A. and Jafari, M. 2008. Antioxidant and free radical scavenging activity of Feijoa Sallowiana fruits peel and leaves. J. Pharmacol-online, 1: 7-14. (In Persian)
23. Chang, C., Yang, M., Wen, H. and Chern, J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178-182.
24.Chung, Y.C., Chen, S.J., Hsu, C.K., Chang, C.T. and Chou, S.T. 2005. Studies on the antioxidative activity of graptopetalum paraguayense E. Walther. Food Chem. 91: 419-424.
25.Karthikeyan, M., Radhika, K., Mathiyazhagan, S., Bhaskaran, R., Samiyappan, R. and Velazhahan, R. 2006. Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Brazilian J. Plant Physiol. 18: 367-377.
26.Aebi, H. 1984. Catalase in vitro. Meth. Enzymol. 105: 121-126.
27.Rabiei, V. and Jozqasemi, S. 2013. Applied laboratory practices in horticultural sciences. Urmia Univ. Press, 264p. (In Persian)
28.Shang, H., Shifeng, C., Zhenfeng, Y., Yuting, C. and Yonghua, Z. 2011. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J. Agric. Food Chem. 59: 1264-1268.
29.Wang, L., Zhang, H., Jin, P., Guo, X., Li, Y., Fan, C., Wang, J. and Zheng, Y. 2016. Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biol. Technol. 118: 71-78.
30.Yang, A.S., Cao, Z., Yang, Y.C. and Zheng, Y. 2011. γ-Aminobutyric acid treatment reduces chilling injury and activates the defense response of peach fruit. Food Chem. 129: 1619-1622.
31.Ramesh, S.A., Tyerman, S.D., Xu, B., Bose, J., Kaur, S., Conn, V., Domingos, P., Ullah, Ramesh, S.A., Tyerman, S.D., Gilliham, M. and Bo, X. 2016. γ-aminobutyric acid (GABA) signalling in plants. Cell. Mol. Life Sci. 74: 1557-1603.
32.Wang, J., Cao, C.H., Wang, L., Wang, X., Jin, P. and Zheng, Y. 2018. Effect of β-Aminobutyric acid on disease resistance against rhizopus rot in harvested peaches. Front. Microbiol. 9: 1505.
34.Wei, X., Ju, Y., Ma, T., Zhang, J., Fang, Y. and Sun, X. 2020. New perspectives on the biosynthesis, transportation, astringency perception and detection methods of grape proanthocyanidins. Food Sci. Nutr. 61: 14. 2372-2398.
35.Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2: 1231-1246.
36.Devies, P.J. and Sun, T.P. 2004. Plant hormones: gibberellin signal transduction in stem elongation and leaf growth. Kluer Academic. London.
37.Ma, Y., Wang, P., Wang, M., Sun, M., Gu, Z. and Yang, R. 2019. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chem. 270: 593-601.
38.Hattori, T., Chen, Y., Enoki, Sh., Igarashi, D. and Suzuki, Sh. 2019. Exogenous isoleucine and phenylalanine interact with abscisic acid-mediated anthocyanin accumulation in grape. Folia Hort. 31: 1. 147-157.
39.Soubeyrand, E., Basteau, C., Hilbert, G., Van Leeuwen, C., Delrot, S. and Gomès, E. 2014. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet Sauvignon berries. Phytochem.
103: 38-49.
40.Kong, J.Q. 2015. Phenylalanine ammonia-lyase a key component used for phenylpropanoids production by metabolic engineering. Royal Society of Chemistry, 5: 62587-62603.
41.Ge, Y.H., Deng, H.W., Bi, Y., Li, C.Y., Liu, Y.Y. and Dong, B.Y. 2015. Postharvest ASM dipping and DPI pre-treatment regulated reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 99: 160-167.
42.Zimmerli, L., Metraux, J.P. and Mauch-Mani, B. 2001. β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fimgus Botrytis cinerea. Plant Physiol. 126: 517-523.
43.Portu, J., González-Arenzana, L., Hermosín-Gutiérrez, I., Santamaría, P. and Garde-Cerdán, T. 2015. Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content. Food Chem. 180: 55-63.
44.Cheng, X., Wang, X., Zhang, A., Wang, P., Chen, Q., Ma, T., Li, W., Liang, Y., Sun, X. and Fang, U. 2020. Foliar phenylalanine application promoted antioxidant activities in cabernet sauvignon by regulating phenolic biosynthesis. J. Agric. Food Chem. 10: 1021.
45.Li, L. and Sun, B. 2019. Grape and wine polymeric polyphenols: Their importance in enology. Crit. Rev. Food Sci. Nutr. 59: 563-579.
46.Shi, P., Song, C., Chen, H., Duan, B., Zhang, Zh. and Meng, J. 2018. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot Grown in the iron deficiency soil. Food Chem. 253: 164-170.
47.Bimpilas, A., Panagopoulou, M., Tsimogiannis, D. and Oreopoulou, V. 2016. Anthocyanin copigmentation and color of wine: the effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chem. 197: 39-46.
48.Hasan, M. and Bae, H. 2017. An overview of stress-induced resveratrol synthesis in grapes: Perspectives for resveratrol-enriched grape products. Molecules, 22: 294.
49.Villegas, D., Handford, M., Alcalde, J.A. and Perez-Donoso, A. 2016. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression. Plant Physiol. Biochem. 104: 125-133.
50.Xie, T., Ji, J., Chen, W., Yue, J., Du, C., Sun, J. and Shi, S. 2019. γ-Aminobutyric acid is closely associated with accumulation of flavonoids. Plant Signal. Behav. 14: 7. 1604015.
51.Lingua, M.S., Fabani, M.P., Wunderlin, D.A. and Baroni, M.V. 2016. From grape to wine: changes in phenolic composition and its influence on antioxidant activity. Food Chem. 208: 228-238.