تولید قارچ داروییBoud. Ganoderma resinaceum روی ضایعات کشاورزی و بررسی پلی ساکارید کل و عملکرد

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

2 دانشجوی دکتری گروه علوم خاک، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 نویسنده مسئول، استادیار علوم باغبانی، گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

4 استادیار علوم باغبانی، گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

5 استادیار علوم باغبانی، گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

6 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

چکیده

چکیده
سابقه و هدف: یکی از راهکارهای مهم برای استفاده از پسماندهای کشاورزی استفاده از ظرفیت بیولوژیکی موجود در قارچ‌هایی دارویی می‌باشد. ضایعات کشاورزی در اکثر نقاط ایران در اثر فعالیت‌های زراعی، باغبانی و جنگل‌داری تولید می‌شوند. و هر ساله هزاران تن مواد زائد سوزانده و یا دور ریخته می‌شوند که این عمل خود منجر به آلودگی زیست محیطی و مخاطرات بهداشتی می-شود. بستر کشت باید علاوه بر قابل دسترس بودن، هزینه‌های مالی کم‌تری را برای تولید کننده ایجاد نماید و همچنین عملکرد مناسبی را هم ایجاد کند. هدف از انجام این پژوهش بررسی بسترهای مختلف (ضایعات مختلف محصولات کشاورزی و صنعتی) برای کشت قارچ G. resinaceum می‌باشد. با انتخاب صحیح بستر کشت و بررسی نسبت متعادل کربن به نیتروژن در بستر کشت می‌توان صفات کمی (عملکرد) و کیفی (ارزش غذایی) مورد نظر در قارچ G. resinaceum را بهبود بخشید.
مواد و روش‌ها: این پژوهش در قالب طرح کاملاً تصادفی با 3 تکرار با جدایه ایرانی قارچ G. resinaceum در سال 1399 انجام شد. بعد از جمع آوری قارچ از جنگل، کشت خالص قارچ از بازیدیوکارپ استریل شده انجام شد و سپس اسپان قارچ G. resinaceum نژاد ایرانی تولید شد. تیمارهای آزمایش شامل 7 نوع بسترهای کشت 1. تراشه چوب درخت صنوبر + سبوس برنج (90 + 10) 2. تراشه چوب درخت صنوبر + کنجاله سویا (90 + 10) 3. تراشه چوب درخت صنوبر + کاه و کلش گندم (60 + 40) 4. تراشه چوب درخت صنوبر + کاه و کلش برنج (60 + 40) 5. تراشه چوب درخت صنوبر + ضایعات تراشه چوب درخت خرما (70 + 30) 6. تراشه چوب درخت صنوبر + ضایعات درخت موز (70 + 30) 7. تراشه چوب درخت صنوبر (100) می‌باشند.
یافته‌ها: نتایج این پژوهش نشان داد بیشترین میزان عملکرد (06/210 گرم بر 2000 گرم بستر)، ماده خشک کل (35/95 گرم بر 2000 گرم بستر)، پلی‌ساکارید کل (95/15 میلی‌گرم بر گرم ماده خشک) و کارایی بیولوژیکی (5/10 درصد) قارچ G. resinaceum به بستر کشت ترکیبی تراشه چوب همراه با سبوس برنج اختصاص داشت. و بیشترین میزان نیتروژن کل اندام میوه‌ای قارچ (67/3 میلی‌گرم در 100 گرم ماده خشک) و پروتئین اندام میوه‌ای قارچ (93/22 میلی‌گرم در 100 گرم ماده خشک) مربوط به بستر کشت تراشه چوب با کنجاله سویا می‌باشد. هم‌چنین کم‌ترین زمان برای مرحله پنجه‌دوانی (66/28 روز)، تشکیل اندام گره-ای (41 روز) و پیش رسی اندام میوه‌ای (65 روز) برای بستر تراشه چوب با سبوس برنج ثبت شد.
نتیجه گیری: یکی از روش‌های مناسب برای اصلاح بسترهای کشت و کاهش نسبت کرین به نیتروژن، افزودن مکمل‌های آلی می-باشد. با توجه به نتایج این تحقیق افزودن مکمل‌های آلی مانند سبوس برنج، کنجاله سویا و استفاده از ضایعات کلش گندم، کلش برنج، ضایعات نخل خرما و ضایعات درخت موز به بستر کشت تراشه چوب توصیه می‌شود.
واژه‌های کلیدی: اندام‌ میوه‌ای، پنجه‌دوانی، بسترهای کشت ترکیبی، مکمل آلی.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production of Ganoderma resinaceum Boud. on agricultural wastes and evaluation of total polysaccharide and yield

نویسندگان [English]

  • Mahboubeh Poodineh 1
  • Behnaz Yousefshahi 2
  • Dariush Ramezan 3
  • Mahdi Aran 4
  • AbdulRahman Rahimian Boogar 5
  • Mahmoud Tavakoli 6
1 M.Sc. Graduate, Dept. of Horticulture Science and Green Space, Faculty of Agriculture, University of Zabol, Zabol, Iran.
2 Ph.D. Student, Dept. of Soil Science, Faculty of Agriculture, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Corresponding Author, Assistant Prof. in Horticulture Science, Dept. of Horticulture Science and Green Space, Faculty of Agriculture, University of Zabol, Zabol, Iran.
4 Assistant Prof. in Horticulture Science, Dept. of Horticulture Science and Green Space, Faculty of Agriculture, University of Zabol, Zabol, Iran.
5 Assistant Prof. in Horticulture Science, Dept. of Horticulture Science and Green Space, Faculty of Agriculture, University of Zabol, Zabol, Iran.
6 Assistant Prof., Dept. of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Iran.
چکیده [English]

Abstract
Background and objectives: One of the important strategies for using agricultural waste is to use the biological capacity of medicinal fungi. Agricultural wastes are produced in most parts of Iran as a result of agricultural, horticultural and forestry activities. And every year, thousands of tons of waste materials are burned or thrown away, which leads to environmental pollution and health hazards. In addition to being accessible, the substrate should create lower financial costs for the producer and also create a suitable performance. The aim of this research is to investigate different substrates (various wastes of agricultural and industrial products) for the cultivation of G. resinaseum. By choosing the right substrate and checking the balanced ratio of carbon to nitrogen in the substrates, it is possible to improve the desired quantitative (performance) and qualitative (nutritional value) traits in G. resinaceum.
Materials and methods: This study was performed in a completely randomized design with 3 replications with Iranian isolate of G. resinaseum in 2020. After collecting the mushroom from the forest, the pure culture of the sterilized basidiocarp was carried out, and then the spawn of the Iranian G. resinaceum was produced. Experimental treatments include 7 types of substrates including 1. Poplar sawdust + Rice bran (90+10) 2. Poplar sawdust + Soybean meal (90+10) 3. Poplar sawdust + Wheat straw (60+40) 4. Poplar sawdust + Rice straw (60+40) 5. Poplar sawdust + Date palm sawdust (70+30) 6. Poplar sawdust + Banana tree waste (70+30) 7. Poplar sawdust (100).
Results: The results of this study showed that the highest yield (210.06 g / 2000 g substrate), total dry matter (95.35 g / 2000 g substrate), total polysaccharide (15.95 mg / g dry matter) and Biological efficiency (10.5 persent) of G. resinaseum belongs to the combination of wood chips with rice bran. And the highest amount of total nitrogen of fruiting body (3.67 mg/100 g dry matter) and the protein (22.93 mg/100 g dry matter) is related to the substrate of wood chips with soybean meal. also, the shortest time for spawn running (28.66 days), pinhead formation (41 days) and precocity (65 days) were recorded for wood chip substrate with rice bran.
Conclusion: Adding organic supplements is one of the appropriate methods to modify the substrate and reduce the ratio of carbon to nitrogen. according to the results of this study, it is recommended to add rice bran supplement, soybean meal and use of wheat straw, rice straw, date palm wastes and banana tree wastes to the wood chip.

Keywords: Combined substrates, Fruit body, Organic supplement, Spawn run.

کلیدواژه‌ها [English]

  • Combined substrates
  • Fruit body
  • Organic supplement
  • Spawn run
1.Azizi, A., Shamalo, T. R. & Sreekantiah, K. R. (1990). Cultivation of Pleurotus sajor-caju on certain agro-industrial wastes and utilization of the residues for cellulase and D-xylanase production. Mush J. Tropic. 10, 21-26.
2.Sarhadi, H., Ramezan, D., Zarabi, M., Pirnia, M., Nasiri Dehsorkhi, A. & Yousefshahi, B. (2021). Evaluation of physical and chemical properties of substrate components in the production process of Shiitake mushroom (Lentinula edodes (Berk.) Pegler). J. Plant Pro Res. 28 (3), 131-146.
3.Kotlaba, F. (1997). Common polypores (Polyporales) collected on uncommon hosts. Czech Mycology.
4.Chen, X. Q., Chen, L. X., Zhao, J., Tang, Y. P. & Li, S. P. (2017). Nortriterpenoids from the fruiting bodies of the mushroom Ganoderma resinaceum. Molecul. 22 (7), 1073.
5.Oyetayo, O. V. (2011). Medicinal uses of mushrooms in Nigeria: towards full and sustainable exploitation. Afr. J. Tradit. Complement Altern. Med. 8, 3.
6.Cassileth, B. R. (2000). Complementary therapies: the American experience. Support Care Cancer. 8 (1), 16-23.
7.Moradali, M. F., Mostafavi, H., Ghods, S. H. & Hedjaroude, G. A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int. J. Immunopharmacol. 7, 701-24.
8.Mojadadi, Sh., Ebtekar, M. & Mohammad Hassan, Z. (2006). Immunomodulatory activity of G. lucidum polysaccharide extract delayed type hypersensitivity. Int. J. Med. Mushroom. 8 (1), 1-5.
9.Zhu, Y., Chen, Y., Li, Q., Zhao, T., Zhang, M. & Feng, W. (2014). Preparation, characterization, and anti-Helicobacter pylori activity of Bi3+-Hericium erinaceus polysaccharide complex. Carbohydr. Polym. 110, 231-237.
10.Patouillard, N. T. (1889). Le genre Ganoderma. Bull. Société mycologique de France. 5, 64-80.
11.Beck, T., Gáperová, S., Gaper, J., Náplavová, K., Sebesta, M., Kisková, J. & Pristas, P. (2020). Genetic (non)-homogeneity of the bracket fungi of the genus Ganoderma (Basidiomycota) in central europe. Mycosphere, 11 (1), 225-238.
12.Steyaert, R. L. (1972). Species of Ganoderma and related genera mainly of the Bogor and Leiden Herbaria. Persoonia-Molecular Phylogeny and Evolution of Fungi. 7 (1), 55-118.
13.Kreisel, H. (1961). Die phytopathogenen grobpilze deutschlands. VEB G. Fischer verlag, Jena.
14.Bae, J. T., Sinha, J., Park, J. P., Song, C. H. & Yun, J. W. (2000). Optimization of submerged culture conditions for exo-biopolymer production by Paecilomyces japonica, J. Microbiol. Biotechnol. 10 (4), 482-487.
15.Bhargava, S., Nandakumar, M. P., Roy, A., Wenger, K. S. & Marten, M. R. (2003). Pulsed feeding during fed‐batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnol. Bioeng. 81 (3), 341-347.
16.Park, J. P., Kim, S. W., Hwang, H. J. & Yun, J. W. (2001). Optimization of submerged culture conditions for the mycelial growth and exo‐biopolymer production by Cordyceps militaris. Lett. Appl. Microbiol. 33 (1), 76-81.
17.Lee, K. M., Lee, S. Y. & Lee, H. Y. (1999). Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. J. Biosci. Bioeng. 88 (6), 646-650.
18.Kawagoe, M., Kawakami, K., Nakamura, Y., Naoe, K., Miki, K. & Noda, H. (1999). Submerged culture of Tricholoma matsutake mycelium in bubble column fermentors. J. Biosci. Bioeng. 87 (1), 116-118.
19.Wagner, R., Mitchell, D. A., Lanzi Sassaki, G., Lopes de Almeida Amazonas, M. A. & Berovič, M. (2003). Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technol. Biotechnol. 41 (4), 371-382.
20.Kim, H. M., Paik, S. Y., Ra, K. S., Koo, K. B., Yun, J. W. & Choi, J. W. (2006). Enhanced production of exopolysaccharides by fed-batch culture of Ganoderma resinaceum DG-6556. J. Microbiol. 44 (2), 233-242.
21.Kumari, R. (2017). In-vitro propagation of Ganoderma Lucidum – A medicinal mushroom in different culture medium. Int. J. Innov. Sci. Technol. 2 (4), 294-297.
22.Zied, D. C. & Pardo-Giménez, A. (2017). Edible and Medicinal Mushrooms. Technology and Applications. John Wiley & Sons.
23.Mottaghi, H. (2005). Medicinal mushrooms (edible). Sepidan Publications. [In Persian]
24.Mohammadi-Goltapeh, A. & Pourjam, A. (1994). Principles of edible mushroom cultivation. Tarbiat Modares University Press. Tehran. [In Persian]
25.Royse, D. & Sanchez, J. E. (2007). Ground wheat straw as a substitute for portions of oak wood chips used in shiitake (Lentinula edodes) substrate formulae. Bioresour. Technol. 98 (11), 2137-2141.
26.Rezaeian, S. H. & Pourianfar, H. R. (2017). Principles and bases of production of medicinal mushrooms in Iran. Publications University of Mashhad. [In Persian]
27.Xie, C., Gong, W., Yan, L., Zhu, Z., Hu, Z. & Peng, Y. (2017). Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Express. 7 (1), 1-8.
28.Harith, N., Abdullah, N. & Sabaratnam, V. (2014). Cultivation of Flammulina velutipes mushroom using various
agro-residues as a fruiting substrate. Pesqui. Agropecu. Bras. 49, 181-188.
29.Imtiaj, A., Jayasinghe, C., Lee, G. W., Shim, M. J., Rho, H. S. & Lee, H. S. (2008). Vegetative growth of four strains of Hericium erinaceus collected from different habitats. Mycobiology. 36 (2), 88-92.
30.Sokól, S., Golak-Siwulska, I., Sobieralski, K., Siwulski, M. & Górka, K. (2015). Biology, cultivation, and medicinal functions of the mushroom Hericium erinaceum. Acta Mycol. 50 (2), 1-18.
31.Chang, S. T. & Miles, P. G. (2004). Mushrooms Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. CRC press.
32.DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28 (3), 350-356.
33.Emami, A. (1996). Methods of plant analysis. Research, Education and Agricultural Promotion Organization. Soil and Water Research Institute. 2, 982. 128. [In Persian]
34.Curvetto, N. R., Figlas, D., Devalis, R. & Delmastro, S. (2002). Growth and productivity of different Pleurotus ostreatus strains on sunflower seed hulls supplemented with N-NH+4 and/or Mn. Bioresour. Technol. 84, 171-176.
35.Adenipekun, C. O. & Gbolagade, J. S. (2006). Nutritional requirements of Pleurotus florida (Mont.) Singer,
a Nigerian mushroom, Pak J. Nutr. 5 (6), 597-600.
36.Hassan, F. R. H., Medany, G. M. & Hussein, S. A. (2010). Cultivation of the king oyster mushroom (Plerrotus eryngii) in Egypt. Aust. J. Basic Appl. 4, 99-105.
37.Gurung, O. K., Budathoki, U. & Parajuli, G. (2012). Effect of different substrates on the production of Ganoderma lucidum (Curt.: Fr.) Karst, Our Nature. 10 (1), 191-198.
38.Hassan, F. R. H. (2007). Cultivation of the monkey head mushroom (Hericium erinaceus) in Egypt. Res. J. Appl. Sci.
3, 1229-1233.
39.Ko, H. G., Park, H. G., Park, S. H., Choi, C. W., Kim, S. H. & Park, W. M. (2005). Compara-tive study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresour. Technol. 96 (13), 1439-1444.
40.Atila, F., Tüzel, Y., Faz Cano, A. & Fernandez, J. A. (2016). Effect of different lignocellulosic wastes on Hericium americanum yield and nutritional characteristics, J. Sci. Food Agric. 97 (2), 606-612.
41.Yang, X. M. (2000). Cultivation of edible mushroom. Beijing: China Agriculture Press.
42.Hoa, H. T., Wang, C. & Wang, C. H. (2015). The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology. 43 (4), 423-434.
43.Atila, F. (2019). Compositional changes in lignocellulosic content of some agro-wastes during the production
cycle of shiitake mushroom, Sci. Hort. 245, 263-268.
44.Bugarski, D., Gvozdenovic, D., Takac, A. & Cervenski, J. (1994). Yield and yield components of different strains of oyster mushroom. Savremena Poljoprivreda. 42, 314-8.
45.Sherief, A., El-Tanash, A. & Temraz, A. (2010). Lignocellulolytic enzymes and substrate utilization during growth and fruiting of Pleurotus ostreatus on some solid wastes. J. Environ. Sci. Technol.3 (1), 18-34.
46.Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Júnior, A. M. & Ribani, R.H. 2019. Factors affecting mushroom Pleurotus spp. Saudi J. Biol. Sci. 26 (4), 633-646.
47.Park, Y. J., Know, O. C., Son, E. S., Yoon, D. E., Han, W., Yoo, Y. B. & Lee, C. S. (2012). Taxonomy of Ganoderma lucidum from Korea based on rDNA and partial β-tubulin gene sequence analysis. Mycobiology. 40 (1), 71-75.
48.Mehta, S., Jandaik, S. & Gupta, D. (2014). Effect of cost-effective substrates on growth cycle and yield of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) from northwestern Himalaya (India). Int. J. Med. Mushrooms. 16 (6), 585-591.
49.Sudheer, S., Alzorqi, I., Ali, A., Guat Cheng, P., Siddiqui, Y. & Manickam, S. (2018). Determination of the biological efficiency and antioxidant potential of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), cultivated using different agro-wastes in Malaysia. Int. J. Med. Mushrooms. 20 (1), 89-100.
50.Mintesnot, B., Ayalew, A. & Kebede, A. (2014). Evaluation of biomass of some invasive weed species as substrate for oyster mushroom )Pleurotus spp.) cultivation. Pak. J. Biol. Sci. 17 (2), 213-9.
51.Stajić, M., Persky, L., Hadar, Y., Friesem, D., Duletić-Laušević, S., Wasser, P. & Nevo, E. (2006). Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes. Appl. Biochem. Biotechnol.128, 87-96.
52.Esmaeil Zehi, M. A. (2021). Investigation of precocity, yield and some pharmacological properties of Iranian strain of Ganoderma applanatum grown on different substrates, Master thesis, Zabol University. [In Persian]
53.Alborés, S., Pianzzola, M. J., Soubes, M. & Cerdeiras, M. P. (2006). Biodegradation of agroindustrial wastes by Pleurotus spp. for its use as ruminant feed. Elec. J. Biotechnol. 9 (3), 15-20.
54.Esmaeil Zehi, M., Solouki, M., Yousefshahi, B., Ramezan, D., Pirnia, M. & Zarabi, M. (2022). The use of agricultural wastes to produce Iranian isolate of Ganoderma applanatum (Pers.) Pat. and evaluation its performance and some pharmacological properties. Journal of Plant Production Research, 29 (1), 85-109.
55.Gowthwal, R., Gupta, A., Kumar, A., Sharma, S. & Alappat, B.J. (2012). Feasibility of dairy waste water (DWW) and distillery spent wash (DSW) effluents in increasing the yield potential of Pleurotus flabellatus (PF 1832) and Pleurotus sajor-caju (PS 1610) on bagasse. Biotech. 2, 249-257.
56.Khan, M. D. A., Tania, M., Aminm, S. M. R., Alam, N. & Uddin, M. D. N. (2008). An investigation on the nutritional composition of mushroom (Pleurotus florida,) cultivated on different substrates. Bangladesh J. Mushroom. 2 (2), 17-23.
57.Veena, S. S. & Pandey, M. (2011). Paddy Straw as a substrate for the cultivation of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. In India, Int. J. Med. Mushroom. 13 (4), 397-400.
58.Azizi, M., Tavana, M., Farsi, M. & Oroojalian, F. (2012). Yield performance of Lingzi or Reishi medical mushroom, Ganoderma lucidum (W. Cart.: Fr.) P. Karst. (higher Basidiomycetes), using different waste materials as substrates. Int. J. Med. Mushroom. 14 (5), 521-527.
59.Lin, Q., Long, L., Wu, L., Zhang, F., Wu, S., Zhang, W. & Sun, X. (2017). Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris, J. Sci. Food Agric. 97, 3476-3480.