تأثیر اسیدسالیسیلیک بر برخی صفات مورفولوژیکی و بیوشیمیایی گیاه برنج (Oryza sativa L.) تحت تنش شوری

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری گروه زیست‌شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد گروه گروه زیست‌شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

3 نویسنده مسئول، دانشیار گروه زیست‌شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

4 دانشیار گروه علوم گیاهی، دانشکده علوم زیستی، دانشگاه خوارزمی، تهران، ایران.

5 دانشیار گروه زیست‌شناسی دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تنکابن، ایران.

چکیده

سابقه و هدف: برنج یکی از گیاهان زراعی مهم است که به ‌ویژه در مراحل اولیه رشد، به تنش شوری حساس است. امروزه کاربرد مواد تنظیم‌کننده رشد گیاهی مانند اسیدسالیسیلیک باعث ایجاد مقاومت گیاهان نسبت به تنش‌های محیطی از جمله شوری شده است. هدف از این تحقیق مطالعه اثر کاربرد اسیدسالیسیلیک بر برخی از خصوصیات مورفولوژیکی و بیوشیمیایی گیاه برنج تحت تنش شوری بود.
مواد و روش‌ها: بدین منظور آرمایشی گلدانی به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی با پنج سطح شوری (0، 25، 50، 75، 100 میلی‌مولار کلرید سدیم) و سه سطح اسیدسالیسیلیک (0، 5/0 ،1 میلی‌مولار) روی برنج رقم ندا در سه تکرار انجام شد. صفات اتدازه‌گیری شامل درصد جوانه‌زنی، طول اندام هوایی و ریشه، میزان پروتئین کل، مالون‌دی‌آلدئید، پرولین و فعالیت برخی آنزیم‌های آنتی‌اکسیدانی بودند.
یافته‌ها: نتایج حاصل از این تحقیق نشان داد که شوری باعث کاهش معنی‌دار بر میزان درصد جوانه‌زنی، طول ساقه و ریشه و کاهش فعالیت پروتئین شد. بیشترین درصد جوانه‌زنی در تیمار شاهد (بدون شوری) و شوری در سطح 25 میل مولار مشاهده شد و با افزایش سطح شوری تا غلظت 100 میلی مولار میزان جوانه زنی کاهش یافت. بیشترین میزان طول ساقه چه نیز در غلظت 25 میلی مولار شوری همراه با اسید سالیسیلیک در غلظت 5/0 میل مولار مشاهده شد. بیشترین و کمترین طول ریشه نیز به ترتیب در تیمار 75 میلی مولار شوری همراه با 1 میلی‌مولار سالیسیلیک اسید و تیمار 100 میلی‌مولار شوری بدون سالیسیلیک اسید بدست آمد. اندازه گیری میزان پروتئین در تیمار‌های مختلف مشحص شد که افزایش سطح شوری موجب کاهش میزان پروتیئن برگ بخصوص در تیمار 100 میلی‌مولار شوری گردید. در تمامی غلظت های شوری، سالیسیلیک اسید میزان پروتئین برگ را افزایش داد و با افزایش غلظت سالیسیلیک اسید از 0 به 1 میلی‌مولار موجب روند افزایشی میزان پروتیئن برگ گردید. بیشترین میزان پروتئین برگ در تیمار بدون شوری و غلظت 1 میلی‌مولار سالیسیلیک اسید اندازه گیری شد. شوری موجب افزایش فعالیت مالون دی آلدئید در سطح شوری 100 میلی ‌مولار نسبت به تیمارهای دیگر شد اما کاربرد سالیسیلیک اسید در غلظت های 5/0 و 1 میلی مولار موجب کاهش تولید آن شد. از طرف دیگر افزایش مقدار صفات بیوشیمیایی از جمله پرولین، آنزیم آنتی‌اکسیدانی (سوپراکسیددیسموتاز) نشان‌دهنده نقش مصرف یک میلی‌مولار اسیدسالیسیلیک بر افزایش تحمل این گیاه در برابر تنش شوری است. در حالی که تنش شوری، میزان فعالیت مالون‌دی‌آلدئید، فعالیت آنزیم آنتی‌اکسیدان (کاتالاز) افزایش یافت که کاربرد گیاه با اسیدسالیسیلیک با کاهش فعالیت این صفات، تنش اکسیداتیو را کاهش می‌دهد که باعث افزایش مقاومت گیاه تحت تنش می‌شود.
نتیجه‌گیری: تیمار اسیدسالیسیلیک ویژگی های بررسی شده را بهبود می‌دهد و با فزایش صفات مورفولوژیکی (درصد جوانه‌زنی، پارامترهای رشد) و صفات بیوشیمیایی(پرولین، فعالیت پروتئین، آنزیم سوپراکسید دیسموتاز)، هم چنین با کاهش میزان فعالیت مالون‌دی‌آلدئید، آنزیم آنتی‌اکسیدان (کاتالاز) تنش اکسیداتیو را کاهش می‌دهد که باعث افزایش مقاومت گیاه تحت تنش شوری می‌شود. با توجه به اینکه بیشتر مناطق ایران از شوری رنج می برند پیشنهاد می گردد که با استفاده از هورمون گیاهی اسید سالیسیلیک طی تنش شوری در دراز مدت توجه بیشتری گردد، در تخفیف اثرات مخرب ناشی از تنش شوری مؤثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Salicylic Acid on some Morphological and Biochemical Traits of Rice (Oryza sativa L.) under salt stress

نویسندگان [English]

  • seyyed elham farhangju 1
  • Sara Sadatmand 2
  • Ramezanali Khavarinezhad 3
  • farzaneh najafi 4
  • Babak Babakhani 5
1 Ph.D. Student, Dept. of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Professor, Dept. of Biology, Faculty of Basic Sciences, Islamic Azad University, Tehran, Iran
3 Corresponding Author, Associate Prof., Dept. of Biology, Faculty of Basic Sciences, Islamic Azad University, Tehran, Iran.
4 Associate Prof., Dept. of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
5 Associate Prof., Dept. of Biology, Faculty of Basic Sciences, Islamic Azad University, Tonekabon, Iran
چکیده [English]

Rice is one of the important crops that is sensitive to salinity stress, especially in the early stages of growth. Today, the use of plant growth regulators such as salicylic acid has made plants resistant to environmental stresses such as salinity.
The purpose of this research was to study the effect of salicylic acid application on some morphological and biochemical characteristics of rice plants under salt stress. For this purpose, factorial plant stabilization based on completely random design with 5 levels of salinity (0, 25, 50, 75, 100 mM sodium chloride) and 3 levels of salicylic acid (0, 0.5, 1 mM) was performed in 3 repetitions. The measured traits included germination percentage, length of shoot and root, amount of total protein, malondialdehyde, proline and activity of some antioxidant enzymes. The results of this research showed that salinity caused a significant decrease in germination percentage, stem and root length, and decreased protein activity, while in plants treated with salicylic acid, the amount of this reduction is moderated. The highest germination percentage was observed in control and 25mM salt stress treatment and decreased by increasing salt treatment up to 100 mM treatment. The highest shoot length observed in 25 mM salt with salicylic acid in 0.5 mM concentration. The highest and the lowest root length derived by 75mM salt stress with 1mM salicylic acid and 100 mM salt stress without any salicylic acid treatments respectively. Protein measurement in different treatment indicated that increasing of salt stress cause decreasing the leaf protein content especially in 100 mM salt concentration. In all salt treatments, salicylic acid increased the leaf protein content, and raising the salicylic acid from 0 to 1 mM cause increasing the leaf protein content. The highest leaf protein content was measured in without salt treatment with 1mM salicylic acid. Salt stress caused rising the malondialdehyde content in 100 mM salt treatment rather than other treatments, but salicylic acid application in 0.5 and 1 mM concentration decreased it. On the other hand, the increase in the amount of biochemical traits including proline, antioxidant enzyme (superoxide dismutase) shows the role of one millimolar salicylic acid consumption in increasing the tolerance of this plant against salt stress. While the salinity stress, the activity of malondialdehyde, the activity of the antioxidant enzyme (catalase) increased, the use of salicylic acid reduces the oxidative stress by reducing the activity of these traits, which increases the resistance of the plant under stress.

کلیدواژه‌ها [English]

  • Salicylic acid
  • Antioxidant
  • Growth index
  • malondialdehyde
  • Prolin
1.Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Physio. 161 (11), 1189-1202.
2.Zorb, C., Geilfus, C. M. & Dietz, K. J. (2019). Salinity and crop yield. Plant. Biol. 21, 31-38.
3.Maness, N. (2010). Extraction and analysis of soluble carbohydrates. In Plant Stress Tol. Pp: 341-370.
4.Alencar, N. L., Gadelha, C. G., Gallao, M. I., Dolder, M. A., Prisco, J. T. & Gomes-Filho, E. (2015). Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Func. Plant Biol. 42 (9), 865-874.
5.Singh, P. K. & Gautam, S. (2013). Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Phys. Planta. 35 (8), 2345-2353.
6.Bukhat, S., Manzoor, H., Athar, H. U. R., Zafar, Z. U., Azeem, F. & Rasul, S. (2020). Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. Plant Grow. Regu. 39 (2), 809-822.
7.Stevens, J., Senaratna, T. & Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Grow. Regu. 49 (1), 77-83.
8.Bostani, A. A. (2017). The effect of auxin and cytokinin on the biochemical parameters and peroxidase activity (H2O2) of stevia (Stevia rebaudiana Bertoni) under salinity stress. J. Soil Plant Inter. 8 (3), 91-105.
9.Muthukumarasamy, M., Gupta, S. D. & Panneerselvam, R. (2000). Influence of triadimefon on the metabolism of NaCl stressed radish. Bio. Planta. 43 (1), 67-72.
10.Ben Hamed, K., Castagna, A., Salem, E., Ranieri, A. & Abdelly, C. (2007). Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Grow. Regu. 53 (3), 185-194.
11.Eraslan, F., Inal, A., Pilbeam, D. J. & Gunes, A. (2008). Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Grow. Regu. 55 (3), 207-219.
12.Momeni, N., Arvin, M. J., Khagoei Negad, G., Keramat, B. & Daneshmand, F. (2013). Effects of sodium chloride and salicylic acid on some photosynthetic parameters and mineral nutrition in maize (Zea mays L.) plants. J. Plant Bio. 5 (15), 15-30. [In Persian]
13.Eskandari, Z. K., Shirani, R. A., Moradi, A. A. & Taherkhani, T. (2013). Effect of salicylic acid application under salinity conditions on physiologic and morphologic characteristics of Artemisia (Artemisia annua L.). Eco. Phys. Agri. Plant. 6, 415-427. [In Persian]
14.Hayat, Q., Hayat, S., Irfan, M. & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Env. Exp. Bot. 68 (1), 14-25.
15.Khalvandi, M., Siosemardeh, A., Roohi, E. & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon. 7 (1), p.e05908.
16.Belkadhi, A., De Haro, A., Soengas, P., Obregon, S., Cartea, M. E., Chaibi, W. & Djebali, W. (2014). Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). J. Plant Intera. 9 (1), 647-654.
17.Mimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., Lutts, S. & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics J. Integ. Bio. 20 (3), 180-190.
18.Heath, R. L. & Packer, L. (1968). Photo peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty
acid peroxidation. Bioch. & Biophy.125 (1), 189-198.
19.Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil. 39 (1), 205-207.
20.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana. Bioch. 72 (1-2), 248-254.
21.Giannopolitis, C. N. & Ries, S. K. (1977). Superoxide dismutase: I. Occurrence in higher plants. Plant Phys. 59 (2), 309-314.
22.Dhindsa, R. S. & Matowe, W. (1981). Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32 (1), 79-91.
23.Maffei, M., Bertea, C. M., Garneri, F. & Scannerini, S. (1999). Effect of benzoic acid hydroxy-and methoxy-ring substituents during cucumber (Cucumis sativus L.) germination. I.: Isocitrate lyase and catalase activity. Plant Scie. 141 (2), 139-147.
24.Dash, M. & Panda, S. K. (2001). Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Bio. Planta. 44 (4), 587-589.
25.Mozafari, H. & Manouchehr, K. K. (2005). The effect of Calcium ion on changes growth, accumulation of nutrient elements and electrophoretic pattern of polypeptides in Descurainia sophia under salt stress. Bio. Iran. Pp: 24-35.
26.Othman, Y., Al-Karaki, G., Al-Tawaha, A. R. & Al-Horani, A. (2006). Variation in germination and ion uptake in barley genotypes under salinity conditions. World J. Agric. Sci. 2 (1), 11-15.
27.Kaur, S., Gupta, A. K. & Kaur, N. (2002). Effect of osmo-and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Grow. Regu. 37 (1), 17-22.
28.Zhang, S. & Klessig, D. F. (1997). Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell. 9 (5), 809-824.
29.Stiles, A., Surette, M. A., Caldwell, C., Nowak, J., Sturz, A. V., Blake, T. J. & Lada, R. (2002). August. Stand Establishment Technologies for Processing Carrots. In XXVI International Horticultural Congress: Issues and Advances in Transplant Production and Stand Establishment Research. 631, 105-116.
30.Senaratna, T., Touchell, D., Bunn, E. & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Grow. Regu. 30 (2), 157-161.
31.Wang, H. M., Xiao, X. R., Yang, M. Y., Gao, Z. L., Zang, J., Fu, X. M. & Chen, Y. H. (2014). Effects of salt stress on antioxidant defense system in the root of Kandelia candel. Bot. Stu. 55 (1), 1-7.
32.Kafi, M., Eishi Rezaii, A., Hagighikhah, M. & Gorbanim, S. (2010). Effect of salinity and seed priming on germination and seedling characteristics of two medicinal citrus species. J. Agr. Eco. 2, 245-255.
33.Liamas, A., Ullrich, C. I. & Sanz, A. (2000). Cadmium effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and soil. 219 (1-2), 21-28.
34.Hussain, A. F., Khan, Z. I., Ashraf, M. D., Rashid, M. H. & Akhtar, M. S. (2004). Effect of salt stress on some growth attributes of sugarcane cultivars CP-77-400 and COJ-84. J. Agri. Bio. 6 (1), 188-191. [In Persian]
35.Khorsandi, O., Hassani, A., Sefidkon, F., Shirzad, H. & Khorsandi, A. R. (2010). Effect of salinity (NaCl) on growth, yield, essential oil content and composition of Agastache foeniculum kuntz. J. Med. & Aro. Plants Res. 26 (3), 438-451. [In Persian]
36.Ghasemi, M., Ghasemi, S., Hosseini Nasab, F. A. & Rezaei, N. (2020). Effect of salicylic acid application on some growth traits of Lemon verbena (Lippia citriodora) under salinity stress. J. Plant Prod. Res. 26 (4), 163-176. [In Persian]
37.Ahmadi, F., Dehestani-Ardakani, M., Momenpour, A. & Golamnezhad, J. (2020). Evaluation of some physiological and morphological characteristics of three genotypes of the ornamental pomegranate (Punica granatum L.) under salt stress. J. Plant Prod. Res. 27 (2), 67-186. [In Persian]
38.Khorasani Nejad, S., Soltanlu, H., Hadian, J. & Atashi, S. (2016). Effect of salinity stress on some apparent, quantitative and qualitative properties of essential oil in lavender. J. Hort. Sci. 30 (2), 209-216. [In Persian]
39.Khaleghi, E. & Moallemi, N. (2009). Effect of different levels of salinity and temperature on seed germination of Cocks Comb (Celosia argentea). J. Plant Prod. 16 (1), 49-163. [In Persian]
40.Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. and Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Scie. 164 (3), 317-322.
41.Hanan, E. D. (2007). Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Bio. Res. 1, 40-48.
42.Rock, C. D. (2000). Tansley Review No. 120: Pathways to abscisic acid‐regulated gene expression. New Phyt. 148 (3), 357-396.
43.Parmoon, G., Ebadi, A., Ghaviazm, A. & Miri, M. (2013). Effect of seed priming on germination and seedling growth of Chamomile under salinity. Crop Prod. 6 (3), 145-164.
44.Zhao, P., Wu, F., Feng, F. S. & Wang, W. J. (2008). Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. In Vitro Cell. Dev. Bio. Plant. 44 (3), 178-185.
45.Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G. & Cicek, N. (2007). Salicylic acid induced changes
on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Phys. 164 (6), 728-736.
46.Bor, M., Ozdemir, F. & Turkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci. 164 (1), 77-84.
47.Bandeoglu, E., Eyidogan, F., Yucel, M. & AvniO, H. (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regu. 42 (1), 69-77.
48.Sairam, R. K., Srivastava, G. C., Agarwal, S. & Meena, R. C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Planta. 49 (1), 85-91.
49.Yazici, I., Turkan, I., Sekmen, A. H. & Demiral, T. (2007). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Env. Exp. Bot. 61 (1), 49-57.
50.Panda, S. K. & Upadhyay, R. K. (2004). Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor. Bio. Planta. 48 (2), 249-253.
51.Khan, M. N., Siddiqui, M. H., Mohammad, F., Khan, M. M. A. & Naeem, M. (2007). Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World J. Agric. Sci. 3 (5), 685-95.
52.Akhkha, A., Boutra, T. & Alhejely, A. (2011). The rates of photosynthesis, chlorophyl1 content, dark respiration, prolin and abscicic acid (ABA) in wheat (Triticum durum) under water deficit conditions. J. Agric. Bio. 13 (2), 15-221.
53.Sahar, K., Amin, B. & Taher, N. M. (2011). The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. J. Stress Phys. Bioch. 7 (4), 80-87. [In Persian]
54.Heidari, A., Toorchi, M., Bandehagh, A. & Shakiba, M. R. (2011). Effect of NaCl stress on growth, water relations, organic and inorganic osmolytes accumulation in sunflower (Helianthus annuus L.) lines. J. Env. Res. & Tech.
1, 351-362.
55.Khosravi, S., Baghizadeh, A. & Nezami, M. T. (2011). The salicylic acid effect on the Salvia officinalis L. under salinity (NACL) stress. J. Stress Phys. Bioch. 7 (4), 80-87.
56.Taşgin, E., Atici, O. & Nalbantoglu, B. (2003). Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Grow. Regu. 41 (3), 231-236.
57.Umebese, C. E., Olatimilehin, T. O. & Ogunsusi, T. A. (2009). Salicylic acid protects nitrate reductase activity, growth and proline in amaranth and tomato plants during water deficit. J. Agri. & Bio. Scie. 4, 224-229.
58.Manaa, A., Gharbi, E., Mimouni, H., Wasti, S., Aschi-Smiti, S., Lutts, S. & Ahmed, H. B. (2014). Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. J. Botany.
95, 32-39.
59.Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecot. & Env. Safe. 60 (3), 324-349.
60.Straus, M. R., Rietz, S., Ver Loren van Themaat, E., Bartsch, M. & Parker, J. E. (2010). Salicylic acid antagonism of EDS1‐driven cell death is important for immune and oxidative stress responses in Arabidopsis. J. The Plant. 62 (46), 28-640.
61.Shallan, M. A., Hassan, H. M., Namich, A. A. & Ibrahim, A. A. (2012). Effect of sodium nitroprusside, putrescine and glycine betaine on alleviation of drought stress in cotton plant. Am Eurasia J. Agri. Env. Sci. 12 (9), 1252-1265.
62.Kamali, M., Kharazi, S. M., Armament, Y. & Tehranifar, A. (2013). Effect of salicylic acid on growth and some morphological traits of Gomphrena globosa L. under salinity stress. J. Hort. Sci. 26 (1), 112-104.
63.Abedzadeh, M. & Pour Akbar, L. (2013). Investigation of the interaction of UV-B, UV-C and salicylic acid rays on some physiological and biochemical parameters of Lemongrass (Melissa officinalis L). Plant process. Func.
2, 1-15.
64.Ghoraba, F. S. & Farahbakhsh, H. (2014). Effects of drought stress
and salicylic acid on morphological
and physiological traits of (Foeniculum vulgare Mill.). J. Crops Impr. 16 (3), 765-778.
65.Misra, N. & Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Scie. 177 (3), 181-189.
66.Koyro, H. W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Env. Exp. Bot. 56 (2), 136-146.
67.Zengin, F. (2014). Exogenous treatment with salicylic acid alleviating copper toxicity in bean seedlings. Proc. Biol. Sci. 84 (3), 749-755.
68.Fallah, A. (2010). Investigation of some physiological mech-anisms associated with salt stress tolerance in Iranian rice cultivars. Deputy of Rice Research Institute of Iran (Amol). [In Persian]
69.Shi, Q. & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Env. Exp. Bot. 63 (1-3), 317-326.