مدل‌های آماری برای پیش بینی غیر تخریبی سطح برگ پیاز (Allium cepa L.)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری اگرواکولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 نویسنده مسئول، استاد گروه اگرواکولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد‌، مشهد، ایران‌

3 استاد گروه اگرواکولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد‌، مشهد، ایران‌

4 استادیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، ایران.

چکیده

مدل‌های آماری برای پیش‌بینی غیر تخریبی سطح برگ پیاز (Allium cepa L.)

سابقه و هدف: اهمیت اندازه‌گیری سریع، غیرمخرب و دقیق سطح برگ در مطالعات زراعی و فیزیولوژیکی به خوبی شناخته شده است و نیاز به برآوردهای سریع و غیرتخریبی سطح برگ منجر به مطالعاتی در رابطه با ابعاد و سطح برگ‌ها گردیده است. بعلاوه این مشکل در مورد گونه‌های که دارای برگ‌های با شکل نامتعارف بارزتر است. در حال حاضر اطلاعات محدودی در این مورد برای پیاز (Allium cepa L.) در دسترس است‌. هدف از این مطالعه ایجاد مدل رگرسیونی با تعین اعتبار آماری برای پیش‌بینی اندازه سطح برگ پیاز به صورت غیرتخریبی در جنوب ایران می‌باشد.



مواد و روش‌ها: به منظور تهیه نمونه‌های گیاهی مورد نیاز جهت اندازه گیری متغیرهای سطح برگ، آزمایشی در سال زراعی 1400-1399 در زمینی به مساحت ۳۰۰ متر مربع در استان هرمزگان-دهستان رهداد اجرا شد. تعداد 40 برگ از بوته‌های پیاز کشت شده در مزرعه به طور تصادفی انتخاب شدند، نیمی از آنها برای واسنجی (کالیبراسیون) و نیم دیگر برای تعیین اعتبار مدل های ریگرسیون مورد استفاده قرار گرفت و از روش استاندارد (LICOR LI-3000C) برای اندازه گیری سطح واقعی برگ‌ها استفاده شد. قبل از اندازه گیری سطح برگ، دو متغیر اصلی یعنی طول و عرض برای هر برگ به طور دقیق تعیین شد. برای انتخاب بهترین متغیرها و به‌دست آوردن معادله تخمین سطح برگ از رگرسیون ساده (خطی) و رگرسیون خطی چندگانه استفاده شد. در نهایت اعتبارسنجی و ارزیابی دقت مدل‌های ارائه شده بر اساس جذر میانگین مربعات خطا (RMSE) و ضریب تعیین (R2) صورت گرفت.



یافته‌ها: تمام مدل‌های خطی برای توصیف سطح برگ (A)، با طول (L)، با عرض (W) و نیز معادلات با دو متغیر طول و عرض برگ در معرض تحلیل رگرسیون قرار گرفت. نتایج نشان داد که طول برگ متغیر بهتری برای توصیف سطح برگ پیاز است و عرض برگ توصیف خوبی از سطح برگ نشان نمی‌دهد. بر اساس یافته‌های این تحقیق مدل پیش بینی سطح برگ با حضور هر دو متغیر طول و عرض:

A= 0.121 + 0.01537 L2 + 0.3225 L×W

با 64/8 RMSE% = و 91/0 R2 = بهترین برآورد را داشت.



نتیجه‌گیری: اندازه گیری سطح برگ به ویژه برای گیاهانی با برگ‌های لوله‌ای نظیر پیاز دشوار و وقت گیر است، چنین مدل‌های ریاضی ابزار بسیار مفیدی برای پیش بینی سطح برگ در بسیاری از گیاهان بدون استفاده از دستگاه‌های گران قیمت خواهد بود. مدل‌های این مطالعه روش ساده، سریع، غیر تخریبی و کم هزینه‌ای برای تخمین سطح برگ پیاز ارائه می‌کند که می‌تواند مورد استفاده پژوهشگران قرار گیرد.



کلید واژه: رگرسیون، سطح برگ، ضریب تبیین، طول برگ، عرض برگ



.

.

.

.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Statistical models for non-destructive prediction of common onion (Allium cepa L.) leaf area

نویسندگان [English]

  • Younes Rameshjan 1
  • Alireza Koocheki 2
  • Mehdi Nassiri Mahallati 3
  • Leila Jafari 4
1 Ph.D. Student of Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Corresponding Author, Professor, Dept. of Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
3 Professor, Dept. of Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 Assistant Prof., Dept. of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Hormozgan, Iran
چکیده [English]

Statistical models for non-destructive prediction of onion (Allium cepa L.) leaf area

Background and objectives: The importance of rapid, non-destructive, and accurate estimation of leaf area (LA) in agronomic and physiological studies is well known. The need for such estimates of leaf area in particular for leaves with unusual shapes has led to studies relating leaf dimensions and leaf area. However, a search of literature revealed that little information is available for short day onion (Allium cepa L.). The objective of this study was to develop a statistically validated regression model for leaf area prediction from simple non-destructive measurements for onion cultivated in the South of Iran.

Materials and methods: In order to prepare the required plant samples to measure leaf area parameters, an experiment was conducted in the cropping year 2020-2021 in a field of 300 square meters located in Hormozgan province-Rahdad district. The short-day cultivar Takii was used because of its wide planting area in the province. 40 leaves were chosen at random from plants growing in the farm, half were left for validation of the model and the other 20 leaves were subjected to measurement and calibration. The standard method (LICOR LI-3000C) was used for measuring the actual areas of the leaves. Before measuring the leaf area, two main parameters related to leaf length and width were accurately determined for each leaf. To select the best variables and the regression model for estimating leaf area, the fitted simple and multiple linear regression were subjected to the stepwise elimination method. Finally, the accuracy of the selected models was validated using the root mean square error (RMSE) and coefficient of determination (R2).

Results:

All linear models for estimation of leaf area with width (W) and length (L) as well as models including both variables were subjected to regression analysis. The results indicated that leaf length (L) is more appropriate variable for estimating onion leaf area and leaf width (W) was not able to properly describe leaf area. Based on the findings of this research leaf area estimation model with both W and L had the best prediction, with RMSE% = 8.64, RMSE= 1.76 and R2= 0.91. (Area= 0.121 + 0.01537 L2 + 0.3225 L×W).

Conclusion: As the understanding of plant growth and development has been increasing, such mathematical models will be very useful tools for the prediction of leaf area for many plants without the use of expensive devices. Thus, the models from the present study will enable researchers of plant growth modeling to predict leaf area non-destructively with the equations developed.

Keywords: Leaf Area, Leaf Length, Leaf Width, Regression, Coefficient of determination.

کلیدواژه‌ها [English]

  • Leaf Area
  • Leaf Length
  • Leaf Width
  • Regression
  • coefficient of determination
1.Breda, N. J. (2003). Ground‐based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54 (392), 2403-2417.
2.Yeshitila, M. & Taye, M. (2016). Non-destructive prediction models for estimation of leaf area for most commonly grown vegetable crops in Ethiopia. International Journal of Applied Mathematics & Statistics, 4(5), 202-216.
3.Brenner, A. J., Cueto, R. M., Garcia, J., Gilabert, M. A., Incoll, L. D., Martinez, F. J., Porter, E., Pugnaire, F. I. & Younis, M. T. (1995). A comparison of direct and indirect methods for measuring leaf and surface areas of individual bushes. Plant, Cell & Environment, 18(11), 1332-1340.
4.Levy, P. E. & Jarvis, P. G. (1999). Direct and indirect measurements of LAI in millet and fallow vegetation in HAPEX-Sahel. Agricultural and Forest Meteorology, 97(3), 199-212.
5.Norman, J. M. & Campbell, G. S. (1989). Canopy structure. In: Pearcy, R. W., Ehleringer, J. R., Mooney, H. A., Rundel, P. W., eds. Plant physiological ecology: field methods and instrumentation. London: Chapman and Hall, 301-325.
6.Welles, J. M. (1990). Some indirect methods of estimating canopy structure. Remote Sensing, 5(1), 31-43.
7.Barclay, H. J., Trofymow, J. A. & Leach, R. I. (2000). Assessing bias from boles in calculating leaf area index in immature Douglas-fir with the Li-Cor canopy analyzer. Agricultural and Forest Meteorology, 100(2-3), 255-260.
8.Chason, J., Baldocchi, D. & Hutson, M. (1991). A comparison of direct and indirect methods for estimating forest
leaf area. Agricultural and Forest Meteorology, 57(1-3), 107-128.
9.Fassnacht, K. S., Gower, S. T., Norman, J. M. & McMurtric, R. E. (1994). A comparison of optical and direct methods for estimating foliage surface area index in forests. Agricultural and Forest Meteorology, 71(1-2), 183-207.
10.Smith, F. W., Sampson, D. A. & Long, J. N. (1991). Comparison of leaf area index estimates from tree allometrics and measured light interception. Forest Science, 37(6), 1682-1688.
11.Goodall, D. W. (1947). Diurnal changes in the area of cacao leaves. Annals of Botany, 11(44), 449-451.
12.Winter, E. J., Salter, P. J., Stanhill, G. & Bleasdale, J. K. (1956). Some methods of measuring leaf area. The growth
of leaves. Butterworths, London. pp 151-167.
13.Daughtry, C. S. (1990). Direct measurements of canopy structure. Remote Sensing, 5(1), 45-60.
14.Nyakwende, E., Paull, C. J. & Atherton, J. G. (1997). Non-destructive determination of leaf area in tomato plants using image processing. Journal of Horticultural Sciences, 72(2), 255-262.
15.Frear, D. E. (1935). Photoelectric apparatus for measuring leaf areas. Plant Physiology, 10(3), 569.
16.Ribeiro, J. E. D. S., Nóbrega, J. S., Coêlho, E. D. S., Dias, T. J. & Melo, M. F. (2022). Estimating leaf area of basil cultivars through linear dimensions of leaves. Revista Ceres, 69, 139-147.
17.Suárez, J. C., Casanoves, F. & Di Rienzo, J. (2022). Non-destructive estimation of the leaf weight and leaf area in common bean. Agronomy, 12(3), 711.
18.Ribeiro, J. E. S., Coêlho, E. S., Figueiredo, F. R. A., Pereira, W. E. & Albuquerque, M. B. (2019b). Leaf area estimation for Psychotria carthagenensis and Psychotria hoffmannseggiana as a function of linear leaf dimensions. Acta Scientiarum, Biological Sciences, 41,1-8.
19.Ribeiro, J. E. S., Barbosa, A. J. S. & Albuquerque, M. B. (2018). Leaf Area Estimate of Erythroxylum simonis Plowman by Linear Dimensions. Floresta e Ambiente, 25,1-7.
20.Ribeiro, J. E. S., Nóbrega, J. S., Figueiredo, F. R. A., Ferreira, J. T. A., Pereira, W. E., Bruno, R. L. A. & Albuquerque, M. B. (2020a). Estimativa da área foliar de Mesosphaerum suaveolens a partir de relações alométricas. Rodriguésia, 71,1-9.
21.Ribeiro, J. E. S., Coêlho, E. S., Figueiredo, F. R. A. & Melo, M. F. (2020b). Non-destructive method for estimating leaf area of Erythroxylum pauferrense (Erythroxylaceae) from linear dimensions of leaf blades. Acta Botanica Mexicana, 127,1-12.
22.Das, M., Deb, C. K., Pal, R. & Marwaha, S. (2022). A Machine Learning Approach for the Non-Destructive Estimation of Leaf Area in Medicinal Orchid Dendrobium nobile L. Applied Sciences, 12(9), 4770.
23.Salazar, J. C. S., Muñoz, L. M. M., Bautista, E. H. D., Rienzo, J. A. D. & Casanoves, F. (2018). Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae, 229, 19-24.
24.Gamiely, S., Randle, W. M., Mills, H. A. & Smittle, D. A. (1991). A rapid and nondestructive method for estimating leaf area of onions. HortScience, 26(2), 206-206.
25.Córcoles, J. I., Domínguez, A., Moreno, M. A., Ortega, J. F. & De Juan, J. A. (2015). A non-destructive method for estimating onion leaf area. Irish Journal of Agricultural and Food Research, 54(1), 17-30.
26.Hoffman, G. J. (1971). Estimating Leaf Area from Length Measurements for Hybrid Granex Onion. Agronomy Journal, 63(6), 948-949.
27.Tei, F., Scaife, A. & Aikman, D. P. (1996). Growth of lettuce, onion, & red beet. 1. Growth analysis, light interception, and radiation use efficiency. Annual. Botany, 78(5), 633-643.
28.Stoppani, M. I., Martí, H. R., Francescangeli, N. & Wolf, R. (2003). A Nondestructive and Rapid Method for Estimating Leaf Area Broccoli. Advances in Horticultural Science, 17(3), 173-175.
29.Rivera, C. M., Rouphael, Y., Cardarelli, M. & Colla, G. (2007). A simple and accurate equation for estimating individual leaf area of eggplant from linear measurements. European Journal of Horticultural Science, 72(5), 228.
30.USDA. (2006). “Keys to Soil Taxonomy, 10th ed”. United States Department of Agriculture, Natural Resources Conservation Services, Washington D.C., USA. pp. 1-339.
31.Legorburo, A. (2005). Estimation of leaf area in Vitis vinifera L. Doctoral Thesis. Higher Technical School of Agricultural Engineers, University of Castilla La Mancha, Albacete, Spain.
32.Wang, Y. (2006). Deterioration & condition rating analysis of water mains (Doctoral dissertation, Concordia University).
33.Wang, Y., Zayed, T. & Moselhi, O. (2009). Prediction models for annual break rates of water mains. Journal of Performance of Constructed Facilities, 23(1), 47-54.
34.Goodnight, J. H. (1979). SAS users guide 1979 edition. SAS Institute, Cary, N.C. pp. 1-260.
35.Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In: Petrov, B. N., Csaki, F. (eds.) Second international symposium on information theory. Budapest, Akaemiai Kiado, 267–281.
36.Burnham, K. P. & Anderson, D. R. (1998). Practical use of the information-theoretic approach. In Model selection and inference (pp. 75-117). Springer, New York, NY.
37.Burnham, K. P. & Anderson, D. R. (2002). Model selection and multimodal inference, 2nd edn. Springer: New York.
38.Garamszegi, L. Z. (2011). Information-theoretic approaches to statistical analysis in behavioural ecology: an introduction. Behavioral Ecology and Sociobiology, 65(1), 1-11.
39.Gilmour, S. G. (1996). The interpretation of Mallows's Cp-statistic. Journal of the Royal Statistical Society, Series D, 45(1), 49–56.
40.Mallows, C. L. 1973. Some comments on Cp. Technometrics, 15(4), 661-675.
41.Boisbunon, A., Canu, S., Fourdrinier, D., Strawderman, W. & Wells, M. T. (2013). AIC, Cp and estimators of loss for elliptically symmetric distributions. arXiv preprint arXiv:1308.2766.
42.Kobayashi, K. & Salam, M. U. (2000). Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal, 92, 345-352.
43.Jamieson, P. D., Porter, J. R., Goudriaan, J., Ritchie, J. V., Van Keulen, H. & Stol, W. (1998). A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research, 55(1-2), 23-44.
44.Asadi, S., Bannayan, M., Jahan, M. & Faridhosseini, A. (2018). Comparison of different spectral vegetation indices for the remote assessment of winter wheat leaf area index in Mashhad. Journal of Agroecology, 10(3), 913-934. [In Persian]
45.Chen, S., Billings, S. A. & Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50(5), 1873-1896.
46.Noori, R., Hoshyaripour, G., Ashrafi, K. & Araabi, B. N. (2010). Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476-482.
47.Manivel, L. & Weaver, R. J. (1974). Biometrics correlations between leaf area and length measurements of ‘Grenache’ grape leaves. HortScience, 9(4), 27–28.
48.Dodge, Y. (2008). The concise encyclopedia of statistics. Springer Science and Business Media.
49.Everitt, B. S. & Skrondal, A. (2010). The Cambridge dictionary of statistics. pp. 1-480.
50.Nasiri Mahallati, M. (2008). Modeling. In the New Agriculture book. Collectors: Koocheki, A.R., Khajeh Hosseini,
M. University Jihad (University of Mashhad), 712p. [In Persian]
51.Epstein, E. & Robinson, R. R. (1965). A Rapid Method for Determining Leaf Area of Potato Plants. Agronomy Journal, 57(5), 515-516.
52.Wendt, C. W. (1967). Use of a Relationship between Leaf Length and Leaf Area to Estimate the Leaf Area of Cotton (Gossypium hirsutum L.), Castors (Ricinus communis L.), and Sorghum (Sorghum vulgare L.). Agronomy Journal, 59(5), 484-486.
53.Rouphael, Y., Mouneimne, A. H., Ismail, A., Mendoza-De Gyves, E., Rivera, C. M. & Colla, G. (2010). Modeling individual leaf area of
rose (Rosa hybrida L.) based on leaf length and width measurement. Photosynthetica, 48(1), 9-15.
54.Fallovo, C., Cristofori, V., de-Gyves, E. M., Rivera, C. M., Rea, R., Fanasca, S. & Rouphael, Y. (2008). Leaf area estimation model for small fruits from linear measurements. HortScience, 43(7), 2263-2267.
55.Rouphael, Y., Rivera, C. M., Cardarelli, M., Fanasca, S. & Colla, G. (2006). Leaf area estimation from linear measurements in zucchini plants of different ages. The Journal of Horticultural Science and Biotechnology, 81(2), 238-241.
56.Rouphael, Y., Colla, G., Fanasca, S. & Karam, F. (2007). Leaf area estimation of sunflower leaves from simple linear measurements. Photosynthetica, 45(2), 306-308.
57.Schwarz, D. & Kläring, H. P. (2001). Allometry to estimate leaf area of tomato. Journal of Plant Nutrition, 24(8), 1291-1309.
58.Olfati, J. A., Peyvast, G., Sanavi, M., Salehi, M., Mahdipour, M. & Nosratie-Rad, Z. (2009). Comparisons of leaf area estimation from linear measurements of red cabbage. International Journal of Vegetable Science, 15(2),185-192.
59.Torri, S. I., Descalzi, C. & Frusso, E. (2009). Estimation of leaf area in pecan cultivars (Carya illinoinensis). Ciencia e Investigacion Agraria, 36(1), 53-58.
60.Abbasi-Karin, S., Karimzadeh, G., Mohammadi-Bazargani, M. & Mokhtassi-Bidgoli, A. (2020). Non-destructive model to estimate leaf area in Epilobium species. Journal of Plant Physiology and Breeding, 10(2),1-12.